Colorimetric detection of sulfide ions in water samples based on the in situ formation of Ag2S nanoparticles

2015 ◽  
Vol 220 ◽  
pp. 210-215 ◽  
Author(s):  
Pengjuan Ni ◽  
Yujing Sun ◽  
Haichao Dai ◽  
Jingting Hu ◽  
Shu Jiang ◽  
...  
2019 ◽  
Vol 292 ◽  
pp. 111476 ◽  
Author(s):  
Huihui Hu ◽  
Wei Wei ◽  
Zhifeng Jiang ◽  
Wei Sun ◽  
Xiaomeng Lv ◽  
...  

2021 ◽  
Author(s):  
Manuela van Pinxteren ◽  
Tiera-Brandy Robinson ◽  
Sebastian Zeppenfeld ◽  
Xianda Gong ◽  
Enno Bahlmann ◽  
...  

Abstract. Transparent exopolymer particles (TEP) exhibit the properties of gels and are ubiquitously found in the world oceans. Possibly, TEP may enter the atmosphere as part of sea spray aerosol. Here, we report number concentrations of TEP (diameter > 4.5 µm) in ambient aerosol and cloud water samples from the tropical Atlantic Ocean as well as in generated aerosol particles using a plunging waterfall tank that was filled with the ambient sea water. The ambient TEP concentrations ranged between 7 × 102 and 3 × 104 #TEP m−3 in supermicron aerosol particles and correlations to sodium (Na+) and calcium (Ca2+) (R2 = 0.5) suggested some contribution via bubble bursting. Cloud water TEP concentrations were between 4 × 106 and 9 × 106 #TEP L−1 corresponding to equivalent air concentrations of 2–4 × 103 #TEP m−3. The TEP concentrations in the tank-generated aerosol particles, produced from the same waters and sampled with an equivalent system, were significantly lower (4 × 102–2 × 103 #TEP m−3) compared to the ambient concentrations. Based on Na+ concentrations in seawater and in the atmosphere, the enrichment factor for TEP in the atmosphere was calculated. The tank-generated TEP were enriched by a factor of 50 compared to sea water and, therefore, in-line with published enrichment factors for supermicron organic matter in general and TEP specifically. TEP enrichment in the ambient atmosphere was on average 1 × 103 in cloud water and 9 × 103 in ambient aerosol particles and therefore about two orders of magnitude higher than the corresponding enrichment from the tank study. Such high enrichment of supermicron particulate organic constituents in the atmosphere is uncommon and we propose that atmospheric TEP concentrations resulted from a combination of enrichment during bubble bursting transfer from the ocean and TEP in-situ formation in atmospheric phases. Abiotic in-situ formation might have occurred from aqueous reactions of dissolved organic precursors that were present in particle and cloud water samples, while biotic formation involves bacteria, which were abundant in the cloud water samples. The ambient TEP number concentrations were two orders of magnitude higher than recently reported ice nucleating particle (INP) concentrations measured at the same location. As TEP likely possess good properties to act as INP, in future experiments it is worth studying if a certain part of TEP contributes a fraction of the biogenic INP population.


RSC Advances ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 3508-3511 ◽  
Author(s):  
Hongxia Fu ◽  
Xinrui Duan

Ag ion reacted with H2S gas in polyelectrolyte multilayer film to form Ag2S nanoparticles that catalyze the formation of Ag NPs.


2019 ◽  
Vol 41 (3) ◽  
pp. 437-437
Author(s):  
Saghir Abbas Saghir Abbas ◽  
Manzar Sohail Manzar Sohail ◽  
Muhammad Arif Nadeem Muhammad Arif Nadeem ◽  
Javaid Hussain Zaidi and Saqib Ali Javaid Hussain Zaidi and Saqib Ali

The development of extended structures using s-block metal centres is fairly rare because of the predominance of ionic forces at metal center. The in-situ formation of 1,3,5-thiadiazole-2,5-dithiol ligand and its coordination to potassium metal ions results in the form of air stable green crystals of a novel framework [C2HKN2OS3]. The two-dimensional framework is characterized as P21 space group with the potassium ion, being heptacoordinated. The compound, showed distorted pentagonal bipyramidal coordination geometry due to the larger cationic radius of the potassium. The potassium metal ion is forming a bond with a nitrogen atom of azine nitrogens, two bonds with the oxygen atoms of the two hydroxyl ions and four bonds with the four sulfide ions of thiol moieties of four different thiadiazole rings. The C-S bond distances are in the range of 1.687(4) to 1.760(4) slightly shorter than the ideal value of 1.77 and#197; for a C(sp2)-S single bond. The thermogravimetric analysis indicates that a successive loss of the ligand occurs in the range of 253.06 oC to 357.53 oC that infers the stability of the compound.


Sign in / Sign up

Export Citation Format

Share Document