successive loss
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Nicholas Strausfeld ◽  
Marcel E Sayre

Neural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. In the shore crab Hemigrapsus nudus, instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.


2020 ◽  
Author(s):  
Nicholas James Strausfeld ◽  
Marcel Ethan Sayre

AbstractNeural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages, resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. Instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it, with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.


2020 ◽  
Vol 117 (11) ◽  
pp. 5655-5663 ◽  
Author(s):  
Susan E. Leggett ◽  
Mohak Patel ◽  
Thomas M. Valentin ◽  
Lena Gamboa ◽  
Amanda S. Khoo ◽  
...  

Epithelial tissues mechanically deform the surrounding extracellular matrix during embryonic development, wound repair, and tumor invasion. Ex vivo measurements of such multicellular tractions within three-dimensional (3D) biomaterials could elucidate collective dissemination during disease progression and enable preclinical testing of targeted antimigration therapies. However, past 3D traction measurements have been low throughput due to the challenges of imaging and analyzing information-rich 3D material deformations. Here, we demonstrate a method to profile multicellular clusters in a 96-well-plate format based on spatially heterogeneous contractile, protrusive, and circumferential tractions. As a case study, we profile multicellular clusters across varying states of the epithelial–mesenchymal transition, revealing a successive loss of protrusive and circumferential tractions, as well as the formation of localized contractile tractions with elongated cluster morphologies. These cluster phenotypes were biochemically perturbed by using drugs, biasing toward traction signatures of different epithelial or mesenchymal states. This higher-throughput analysis is promising to systematically interrogate and perturb aberrant mechanobiology, which could be utilized with human-patient samples to guide personalized therapies.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4591 ◽  
Author(s):  
Jin-Bao Ye ◽  
Gang Ren ◽  
Wen-Yan Li ◽  
Guo-Yue Zhong ◽  
Min Zhang ◽  
...  

In this study, a combination of quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and linear trap quadrupole orbitrap mass spectrometry (LTQ-Orbitrap-MS) was performed to investigate the fragmentation behaviors of prenylated flavonoids (PFs) from Artocarpus plants. Fifteen PFs were selected as the model molecules and divided into five types (groups A–E) according to their structural characteristics in terms of the position and existing form of prenyl substitution in the flavone skeleton. The LTQ-Orbitrap-MSn spectra of the [M − H]− ions for these compounds provided a wealth of structural information on the five different types of compounds. The main fragmentation pathways of group A were the ortho effect and retro Diels–Alder (RDA), and common losses of C4H10, CO, and CO2. The compounds in group B easily lose C6H12, forming a stable structure of a 1,4-dienyl group, unlike those in group A. The fragmentation pathway for group C is characterized by obvious 1,4A−, 1,4B− cracking of the C ring. The diagnostic fragmentation for group D is obvious RDA cracking of the C ring and the successive loss of CH3 and H2O in the LTQ-Orbitrap-MSn spectra. Fragmentation with successive loss of CO or CO2, ·CH3, and CH4 in the LTQ-Orbitrap-MSn spectra formed the characteristics of group E. The summarized fragmentation rules were successfully exploited to identify PFs from Artocarpus heterophyllus, a well-known Artocarpus plant, which led to the identification of a total of 47 PFs in this plant.


2019 ◽  
Vol 47 (10) ◽  
pp. 1-10 ◽  
Author(s):  
Yujia Sui ◽  
Hongying Tan ◽  
Di Li

We used the Balloon Analogue Risk Task to study the changes and differences in risk preference between individuals and dyads in successive loss and gain contexts. Regardless of who was making the decision, the degree of risk taking after the first gain was significantly higher than that after the first loss, whereas the degree of risk taking after successive gains was significantly lower than that after successive losses. Further, risk preference increased after successive losses, and the increase was smaller for a dyad than for an individual, meaning the dyad’s decision making was more rational. Participants’ risk preference decreased after successive gains, and the extent of the decrease was larger for a dyad than that for an individual, meaning that individuals’ decision making was more rational. These findings indicate that the rational performance of both individuals and dyads in continuous risk decision making varies according to their gains or losses.


2019 ◽  
Author(s):  
Susan E. Leggett ◽  
Mohak Patel ◽  
Thomas M. Valentin ◽  
Lena Gamboa ◽  
Amanda S. Khoo ◽  
...  

ABSTRACTEpithelial tissues mechanically deform the surrounding extracellular matrix during embryonic development, wound repair, and tumor invasion. Ex vivo measurements of such multicellular tractions within three-dimensional (3D) biomaterials could elucidate collective dissemination during disease progression, and enable preclinical testing of targeted anti-migration therapies. However, past 3D traction measurements have been low throughput due to the challenges of imaging and analyzing information-rich 3D material deformations. Here, we demonstrate a method to profile multicellular clusters in a 96-well plate format based on spatially heterogeneous contractile, protrusive, and circumferential tractions. As a case study, we profile multicellular clusters across varying states of the epithelial-mesenchymal transition, revealing a successive loss of protrusive and circumferential tractions, as well as the formation of localized contractile tractions with elongated cluster morphologies. These cluster phenotypes were biochemically perturbed using drugs, biasing towards traction signatures of different epithelial or mesenchymal states. This higher-throughput analysis is promising to systematically interrogate and perturb aberrant mechanobiology, which could be utilized with human patient samples to guide personalized therapies.


2019 ◽  
Vol 41 (3) ◽  
pp. 437-437
Author(s):  
Saghir Abbas Saghir Abbas ◽  
Manzar Sohail Manzar Sohail ◽  
Muhammad Arif Nadeem Muhammad Arif Nadeem ◽  
Javaid Hussain Zaidi and Saqib Ali Javaid Hussain Zaidi and Saqib Ali

The development of extended structures using s-block metal centres is fairly rare because of the predominance of ionic forces at metal center. The in-situ formation of 1,3,5-thiadiazole-2,5-dithiol ligand and its coordination to potassium metal ions results in the form of air stable green crystals of a novel framework [C2HKN2OS3]. The two-dimensional framework is characterized as P21 space group with the potassium ion, being heptacoordinated. The compound, showed distorted pentagonal bipyramidal coordination geometry due to the larger cationic radius of the potassium. The potassium metal ion is forming a bond with a nitrogen atom of azine nitrogens, two bonds with the oxygen atoms of the two hydroxyl ions and four bonds with the four sulfide ions of thiol moieties of four different thiadiazole rings. The C-S bond distances are in the range of 1.687(4) to 1.760(4) slightly shorter than the ideal value of 1.77 and#197; for a C(sp2)-S single bond. The thermogravimetric analysis indicates that a successive loss of the ligand occurs in the range of 253.06 oC to 357.53 oC that infers the stability of the compound.


Development ◽  
2007 ◽  
Vol 134 (17) ◽  
pp. 3099-3109 ◽  
Author(s):  
L. J. Pillitteri ◽  
S. M. Bemis ◽  
E. D. Shpak ◽  
K. U. Torii

2006 ◽  
Vol 51 (10) ◽  
pp. 1613-1622 ◽  
Author(s):  
O. P. Charkin ◽  
N. M. Klimenko ◽  
T. P. Nguyen ◽  
D. O. Charkin ◽  
Y. -S. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document