scholarly journals Liquefaction resistance of christchurch sandy soils from direct simple shear tests

2021 ◽  
Vol 141 ◽  
pp. 106489
Author(s):  
Claudio Cappellaro ◽  
Misko Cubrinovski ◽  
Jonathan D. Bray ◽  
Gabriele Chiaro ◽  
Michael F. Riemer ◽  
...  
2020 ◽  
Vol 10 (13) ◽  
pp. 4502
Author(s):  
Zhenzhen Nong ◽  
Sung-Sik Park ◽  
Sueng-Won Jeong ◽  
Dong-Eun Lee

The frequency of ground motions during earthquakes is typically in the order of a few hertz. As the earthquake-induced liquefaction of soils is widely assessed by performing laboratory tests, it is necessary to consider various loading frequencies generated by real earthquakes. The effect of loading frequency has been studied by cyclic triaxial tests; however, it has rarely been investigated by cyclic direct simple shear tests, which are more similar to the cyclic loading conditions associated with earthquakes. In this study, a series of cyclic direct simple shear tests were performed on clean sand with a relative density (Dr) of 40% (loose sand) and 80% (dense sand), obtained from Nakdong River. The parameters considered are the initial vertical effective stresses (σv0′ = 50, 100, and 200 kPa) and the loading frequencies (f = 0.05, 0.1, 0.5, and 1 Hz) to evaluate the effect of the loading frequency on the liquefaction prediction of clean sand. The results showed that the liquefaction resistance of the sand increases with the increase in the loading frequency, regardless of the initial vertical effective stress and relative density. When the loading frequency increased from 0.1 to 0.5 or 1 Hz, the maximum increase in the cyclic resistances were 15%, and 19% for loose and dense sand, respectively. For a given loading frequency, the liquefaction resistance of the sand decreased when the initial vertical effective stress increased.


2020 ◽  
Vol 44 (5) ◽  
pp. 20190471
Author(s):  
M. Konstadinou ◽  
A. Bezuijen ◽  
G. Greeuw ◽  
C. Zwanenburg ◽  
H. M. Van Essen ◽  
...  

2019 ◽  
Vol 92 ◽  
pp. 08002 ◽  
Author(s):  
Lucia Mele ◽  
Stefania Lirer ◽  
Alessandro Flora

The cyclic simple shear tests can be used to reproduce in laboratory the complex behaviour of the soil during an earthquake, simulating the continuous rotation of the principal stress axes. In this research a comparison of results between cyclic simple shear tests carried out with confining pressure or confining rings is reported. A cyclic simple shear apparatus is used to carry out tests with confining rings (the conventional way to carry out cyclic simple shear tests) and with a confining pressure applied to the specimen through pressurized water, where the K0 condition during consolidation is guaranteed by a sophisticated control system. The apparatus, in both the configurations, is described in detail. All tests were carried out on reconstituted specimens of an Italian sand with similar initial conditions, such as low relative density and confining pressure. All experimental results are reported in the plane cyclic stress ratio (CSR) and number of cycles where liquefaction occurs (Nliq) in order to evaluate the effect of confinement on the liquefaction resistance of the studied sand.


2008 ◽  
Vol 45 (10) ◽  
pp. 1345-1355 ◽  
Author(s):  
J. A. Díaz-Rodríguez ◽  
V. M. Antonio-Izarraras ◽  
P. Bandini ◽  
J. A. López-Molina

This paper summarizes the experimental results of a series of cyclic simple shear tests on liquefiable silty sand with and without sample improvement with colloidal silica grout. The objective of the paper is to evaluate the effectiveness of colloidal silica grouting in reducing the liquefaction potential of natural silty sand. Colloidal silica was selected as a stabilizing material due to its low viscosity, wide range of gel times, nontoxicity, and low cost. The soil tested in this experimental program is a poorly graded sand with 11.5% of nonplastic silt from the Port of Lázaro Cárdenas, México. Colloidal silica treated and untreated sand specimens show different pore pressure response and deformation behavior under cyclic loading in simple shear tests. The results indicate that, for a given initial relative density and initial effective vertical stress, liquefiable silty sand specimens stabilized with colloidal silica grout generally exhibit significant gain in liquefaction resistance compared with untreated specimens. It was also found that the colloidal silica grout reduces considerably the rates of pore pressure generation and shear strain of the silty sand specimens subjected to cyclic loading.


Author(s):  
Lopamudra Bhaumik ◽  
Alfonso A. Cerna-Diaz ◽  
Ozgun A. Numanoglu ◽  
Scott M. Olson ◽  
Cassandra J. Rutherford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document