Long-term thermal performance of a two-phase thermosyphon solar water heater

Solar Energy ◽  
2009 ◽  
Vol 83 (7) ◽  
pp. 1048-1055 ◽  
Author(s):  
Bo-Ren Chen ◽  
Yu-Wei Chang ◽  
Wen-Shing Lee ◽  
Sih-Li Chen
Author(s):  
Amit K. Bhakta ◽  
Nitesh K. Panday ◽  
Shailenrda N. Singh

This paper reports the overall thermal performance of a cylindrical parabolic concentrating solar water heater (CPCSWH) with inserting nail type twisted tape (NTT) in the copper absorber tube for the nail twist pitch ratios 4.787, 6.914 and 9.042 respectively. The experiments are conducted for a constant volumetric water flow rate and during the time period 9:00 h to 15:00 h. The useful heat gain, hourly solar energy collected and hourly solar energy stored of this solar water heater are found higher for nail twist pitch ratio 4.787. The above said parameters are found to be a peak at noon and observed to follow the path of variation of solar intensity. At the starting of the experiment, the value of charging efficiency is observed to be maximum. Whereas the maximum value of instantaneous efficiency and overall thermal efficiency are observed at noon. The key finding is that the nail twist pitch ratio enhances the overall thermal performance of the CPCSWH.


Author(s):  
Rinaldo H. Malau ◽  
Hideki Kawai ◽  
Himsar Ambarita ◽  
Dandy R. Tampubolon ◽  
Wahyu M. Silalahi

1992 ◽  
Vol 114 (3) ◽  
pp. 188-193 ◽  
Author(s):  
H. A. Walker ◽  
J. H. Davidson

Entropy generated by operation of a two-phase self-pumping solar water heater under Solar Rating and Certification Corporation rating conditions is computed numerically in a methodology based on an exergy cascade. An order of magnitude analysis shows that entropy generation is dominated by heat transfer across temperature differences. Conversion of radiant solar energy incident on the collector to thermal energy within the collector accounts for 87.1 percent of total entropy generation. Thermal losses are responsible for 9.9 percent of total entropy generation, and heat transfer across the condenser accounts for 2.4 percent of the total entropy generation. Mixing in the tempering valve is responsible for 0.7 percent of the total entropy generation. Approximately one half of the entropy generated by thermal losses is attributable to the self-pumping process. The procedure to determine total entropy generation can be used in a parametric study to evaluate the performance of two-phase hot water heating systems relative to other solar water heating options.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Djamel Benmenine ◽  
Mokhtar Ghodbane

This study aims to conduct an experimental thermal examination of a parabolic trough collector in Ouargla region at Algeria, which will be used as a solar water heater. The solar collector was manufactured and then experimentally tested, as its theoretical optical performance was estimated at 75.06%, while the values of its true thermal performance are 10.61, 10.68 and 8.85 % for 13 May, 14 May and 15 May. Although its thermal performance is somewhat low, the studied PTC is effective in heating the water, whereas, using a volumetric flow of 0.011 l/s, about 317 liters of water can be heated daily at 42°C, knowing that the daily average consumption of hot water in a typical house is 250 liters because the Ouargla region is strategically located that receives huge amounts of solar irradiance


Sign in / Sign up

Export Citation Format

Share Document