scholarly journals Stabilization of light-induced effects in Si modules for IEC 61215 design qualification

Solar Energy ◽  
2020 ◽  
Vol 208 ◽  
pp. 894-904 ◽  
Author(s):  
I.L. Repins ◽  
F. Kersten ◽  
B. Hallam ◽  
K. VanSant ◽  
M.B. Koentopp
2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Norman L. Newhouse ◽  
George B. Rawls ◽  
Mahendra D. Rana ◽  
Bernard F. Shelley ◽  
Michael R. Gorman

The purpose of this paper is to document the development of ASME Section X Code rules for high pressure vessels for containing hydrogen and to provide a technical basis of their content. The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15,000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with nonload sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 21 MPa (3000 psi) to 105 MPa (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 in.). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, including Acoustic Emission testing at the time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.


Author(s):  
Nerea de Miguel ◽  
Georg Mair ◽  
Beatriz Acosta ◽  
Mariusz Szczepaniak ◽  
Pietro Moretto

Current standards governing the design, qualification and in-service inspection of carbon fibre composite cylinders do not facilitate to optimise cylinder design. The requirements have been adapted from standards for metallic cylinders and cannot easily quantify the degradation processes in composite materials. In this article, the results of hydraulic and hydrogen pressure cycle life tests performed on composite reinforced tanks with a metal liner (type 3) and with a high density polymer liner (type 4) are shown. Moreover, the degradation measured by means of residual strength of the tanks after the cycling tests have been compared. It has been found that the most critical aging for metal based composite cylinder is the gaseous cycling while type 4 designs seem to be more sensitive to hydraulic cycling at high temperature.


Sign in / Sign up

Export Citation Format

Share Document