Corpectomy versus discectomy for the treatment of multilevel cervical spine pathology: a finite element model analysis

2012 ◽  
Vol 12 (5) ◽  
pp. 401-408 ◽  
Author(s):  
Mozammil Hussain ◽  
Ahmad Nassr ◽  
Raghu N. Natarajan ◽  
Howard S. An ◽  
Gunnar B.J. Andersson
Author(s):  
Mozammil Hussain ◽  
Ralph E. Gay ◽  
Kai-Nan An ◽  
Rodger Tepe

Many neck pain complaints are associated with degenerated discs in cervical spine. Disc degeneration (DD) consists of cascading stages of events with complex changes in disc tissue properties. This results in deterioration of the ability of the disc to perform its function normally. Several biomechanical and biochemical changes occur in the disc with degeneration. Increase in motion segment stiffness and peak stresses in the posterior annulus are some of the gross changes that occur in the disc with degeneration.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


2017 ◽  
Vol 17 (11) ◽  
pp. 1755-1764 ◽  
Author(s):  
Timothy L. Lasswell ◽  
Duane S. Cronin ◽  
John B. Medley ◽  
Parham Rasoulinejad

2017 ◽  
Vol 62 (2/3/4) ◽  
pp. 155
Author(s):  
Albert Oliver ◽  
Raúl Arasa ◽  
Agustí Pérez Foguet ◽  
Mª Ángeles González

Sign in / Sign up

Export Citation Format

Share Document