axial stiffness
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 125)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jichao Liu ◽  
Zhengwei Li ◽  
Jie Ding ◽  
Bingzhe Huang ◽  
Chengdong Piao

Abstract Background Femoral neck fractures in young people are usually Pauwels Type III fractures. The common treatment method are multiple parallel cannulated screws or dynamic hip screw sliding compression fixation. Due to the huge shear stress, the rate of complications such as femoral head necrosis and nonunion is still high after treatment. The aim of our study was to compare the stabilities of two fixation methods in fixating pauwels type III femoral neck fractures. Methods All biomimetic fracture samples are fixed with three cannulated screws combined with a medial buttress plate. There were two fixation groups for the buttress plate and proximal fracture fragment: Group A, long screw (40 mm); Group B, short screw (6 mm). Samples were subjected to electrical strain measurement under a load of 500 N, axial stiffness was measured, and then the samples were axially loaded until failure. More than 5 mm of displacement or synthetic bone fracture was considered as construct failure. Results There were no significant differences in failure load (P = 0.669), stiffness (P = 0.842), or strain distribution (P > 0.05) between the two groups. Conclusions Unicortical short screws can provide the same stability as long screws for Pauwels Type III Femoral Neck Fractures.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2451
Author(s):  
Zengliang Hao ◽  
Biao Yao ◽  
Yuhang Chen ◽  
Junting Luo

The U-shaped metal bellows expansion joint compensates for the pipeline displacement by its own deformation. The compensation performance of the metal bellows in the initial stage of tension and compression deformation is unstable. In this paper, the symmetrical cyclic tension and compression (SCTC) process of metal bellows was simulated by ABAQUS software. Then, the SCTC process experiment of metal bellows was completed on the universal material testing machine. The distribution law of axial load with displacement and that of axial stiffness and yield load with cycles of metal bellows were obtained. Finally, the X-ray diffraction peak confirmed the deformation-induced martensite in the wave trough and proved that the plastic strain and hardness values of metal bellows increased with the displacement amplitude. The microstructure in the wave trough area was observed by a Zeiss microscope, and the stability characteristics mechanism of the metal bellows was revealed. The martensite in the wave trough increases the grain boundary area under SCTC loading. The forward movement of the slip band in the grain caused by large deformation reached an equilibrium state with the resistance at the grain boundary, which promotes the macroscopic mechanical properties of the metal bellows to be stable characteristics under SCTC loading.


2021 ◽  
Vol 11 (24) ◽  
pp. 12024
Author(s):  
Tengfei Zhao ◽  
Hong Yan ◽  
Panpan He ◽  
Lei Zhang ◽  
Zhiwen Lan ◽  
...  

Transmission tower connection joint is an important connection component of the tower leg member and diagonal member. Its axial stiffness directly affects the stable bearing capacity of a transmission tower. The axial stiffness of the joint is mainly related to the connection form of joint. This paper takes the double-limb double-plate connection joint as the research object. Through the comparative study with the single-limb single-plate connection joint, the influence law of single-limb single-plate and double-limb double-plate joint on stable bearing capacity of quadrilateral transmission tower is studied from three aspects of model test, theoretical analysis and numerical simulation. Through the scale model test, it is found that the elastic stiffness of the double-limb double-plate joint is 3.12 times that of the single-limb single-plate joint, which can increase the bearing capacity of the joint by 26.1%. Through the energy method, the theoretical calculation expression of the stable bearing capacity of the quadrilateral tower considering the influence of the axial stiffness of the joint is derived. Compared with the effect of the single-limb single-plate connection joint, the double-limb double-plate joint can improve the stable bearing capacity of the quadrilateral tower by 15.6%. Considering the influence of geometric nonlinearity of tower and connecting joint, it is found that the double-limb double-plate connecting joint can improve the nonlinear stability bearing capacity of a transmission tower by 14.9%. The results show that the double-limb double-plate connection joint can not only improve the bearing capacity of the joint, but also greatly improve the stable bearing capacity of the tower. The research results can provide reference for the engineering application and design of double-limb double-plate connection joints.


2021 ◽  
Vol 13 (4) ◽  
pp. 35-45
Author(s):  
Calin-Dumitru COMAN COMAN

This paper presents the effects of temperature on the axial stiffness of a hybrid metal-composite countersunk bolted joint designed for the bearing failure mode. A detailed 3D finite element model incorporating geometric, material and friction-based full contact nonlinearities is developed to numerically investigate the temperature effects on joint stiffness. In order to validate the temperature effects, experiments were conducted using an Instron testing machine coupled to a temperature controlled chamber. The results showed that the temperature effects on axial joint stiffness were quite accurately predicted by the 3D finite element model, denoting a reduction in the stiffness of the axial joint with an increase in temperature for hybrid metal-composite countersunk bolted joints.


Author(s):  
Hongyang Hu ◽  
Ming Feng

The integral bump foil strip cannot optimize the performance for the compliant conical foil bearing (CFB) as the uneven distribution of structural stiffness. To maximize the bearing characteristics, this paper proposed different bump foil schemes. Firstly, the anisotropy of CFB was studied based on the nonlinear bump stiffness model, and the circumferentially separated foil structure was proposed. Moreover, an axially separated bump foil structure with the variable bump length was introduced to make the axial stiffness distribution more compliant with the gas pressure. In addition, the effect of foil thickness was also discussed. The results show that CFB with integral bump foil exhibits obvious anisotropy, and the suggested installation angle for largest load capacity and best dynamic stability are in the opposite position. Fortunately, a circumferential separated bump foil can improve this defect. The characteristics of CFB with axial separated foil structure can be improved significantly, especially for that with more strips and the variable bump half-length design. The suitable bump and top foil thickness should be set considering the improved supporting performance and proper flexibility. The results can give some guidelines for the design of CFB.


2021 ◽  
Author(s):  
Sedighe A Keynia ◽  
Thomas C Davis ◽  
Daniel Szymanski ◽  
Joseph A Turner

Plant cell size and shape are tuned to their function and specified primarily by cellulose microfibril (CMF) patterning of the cell wall. Arabidopsis thaliana leaf trichomes are responsible for protecting plants against environmental elements and are unicellular structures that employ a highly anisotropic cellulose wall to extend and taper, generating pointed branches. During elongation, the mechanisms by which shifts in fiber orientation generate cells with predictable sizes and shapes are unknown. Specifically, the axisymmetric growth of trichome branches is often thought result from axisymmetric CMF patterning. Here, we analyzed the direction and degree of twist of branches after desiccation to reveal the presence of an asymmetric cell wall organization with a left-hand bias. CMF organization, quantified using computational modeling, suggests a limited reorientation of microfibrils during growth and maximum branch length limited by the wall axial stiffness. The model provides a mechanism for CMF asymmetry, which occurs after the branch bending stiffness becomes low enough that ambient bending affects the principal stresses. After this stage, the CMF synthesis results in a constant bending stiffness for longer branches. The resulting natural frequency of branches after a length of 200 μm falls within the range of the sounds associated with many insects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yandong Liu ◽  
Xianying Feng ◽  
Yanfei Li ◽  
Jiajia Lu ◽  
Zhe Su

AbstractThe flow state of oil film in the hydrostatic lead screw directly affects the transmission performance of the screw pair. The static and dynamic characteristics of a new type of double driven hydrostatic screw-nut pair (DDHSNP) are studied under different motion modes. The boundary condition of navier slip model is introduced into the lubricating mathematical model of DDHSNP, and the influences of boundary slip on the axial bearing capacity, axial stiffness and damping coefficient in micro scale are researched by finite difference method. The results show that when the motor runs at high speed (the rotating speed range of the screw and nut driven motor is 1000–9000 rpm), the existence of boundary slip leads to a improvement of the axial bearing capacity and stiffness coefficient of DDHSNP in the case of single-drive operation and dual-drive differential feed (the range of rotation difference is 10–100 rpm), which is more obvious under the single-drive mode. The increase rate of stiffness coefficient induced by boundary slip is much larger than that of bearing capacity. In addition, the boundary slip has little effect on the damping coefficient of DDHSNP in either single drive operation or dual drive differential operation.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 255
Author(s):  
Peng Shen ◽  
Yiwen Wang ◽  
Yun Chen ◽  
Pengqiang Fu ◽  
Lijie Zhou ◽  
...  

Rotor suspension stability is one of the important performance indexes of a blood pump and the basis of determining whether the blood pump can be used in a clinic. Compared with the traditional magnetic suspension system, a single-winding, bearingless motor has the advantages of a compact structure, simple control system and low power consumption. In this pursuit, the present study aimed to envisage and design the magnetic suspension system coupled with a single-winding bearingless motor and permanent magnet bearings, establish the theoretical models of axial force and electromagnetic torque, and calculate the stiffness of the magnetic suspension system at the equilibrium point. Addressing the problem of the negative axial stiffness of the magnetic suspension system being negative, which leads to the instability of the suspension rotor, the hydrodynamic bearing structure was proposed and designed, and the critical stiffness to realize the stable suspension of the rotor was obtained based on the stability criterion of the rotor dynamics model. The optimal structural parameters of the hydrodynamic bearing are selected by integrating various factors based on the solution of the Reynolds equation and a stiffness analysis. Furthermore, the vibration experiment results proved that the blood pump rotor exhibited a good suspension stability, and the maximum offset under the impact external fluid was no more than 2 μm.


2021 ◽  
pp. 136943322110427
Author(s):  
Xiang Zhang ◽  
Quan-Sheng Yan ◽  
Bu-Yu Jia ◽  
Zheng Yang ◽  
Ying-Hao Zhao ◽  
...  

Connecting the ends of girders with a continuous slab-deck to make a multiple-span simply supported girder bridge provides many benefits, but there is no suitable nonlinear analysis model which considers continuous slab-deck cracking under tension and bending. In this article, the rotational spring model is further refined to replace the restraining effects at both ends of the girder by the simplified mechanical model associated with axial stiffness, bending stiffness, and shear stiffness. Then, it is introduced into the analysis of continuous slab-deck. The more accurate rotations and displacements of both ends of continuous slab-deck are obtained to investigate the more precise moment and tension of the continuous slab-deck. Furthermore, this article presents an improved nonlinear analysis model of continuous slab-deck based on a detailed boundary rotational spring model. The displacements of important positions and the strain of key components in continuous slab-deck after cracking are investigated by numerical analysis and full-scale model test to verify the accuracy of the proposed nonlinear analysis model. The result shows that the nonlinear analysis model presented in this article could successfully evaluate the depth of cracks and the stress of rebars in continuous slab-deck, and it is instructional in predicting the cracking state of the continuous slab-deck and the reinforcement design.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


Sign in / Sign up

Export Citation Format

Share Document