Patient and Surgeon Radiation Exposure during Spinal Instrumentation Using Intraoperative CT-Based Navigation

2015 ◽  
Vol 15 (10) ◽  
pp. S169 ◽  
Author(s):  
Daniel Mendelsohn ◽  
Jason Strelzow ◽  
Nicolas Dea ◽  
Juliet N. Batke ◽  
Charles G. Fisher ◽  
...  
2010 ◽  
Vol 28 (3) ◽  
pp. E11 ◽  
Author(s):  
Matthew J. Tormenti ◽  
Dean B. Kostov ◽  
Paul A. Gardner ◽  
Adam S. Kanter ◽  
Richard M. Spiro ◽  
...  

Object Placement of thoracolumbar pedicle screws in spinal deformity surgery has a reported inaccuracy rate as high as 30%. At present, image-guided navigation systems designed to improve instrumentation accuracy typically use intraoperative fluoroscopy or preoperative CT scans. The authors report the prospective evaluation of the accuracy of posterior thoracolumbar spinal instrumentation using a new intraoperative CT operative suite with an integrated image guidance system. They compare the accuracy of thoracolumbar pedicle screw placement using intraoperative CT image guidance with instrumentation placement utilizing fluoroscopy. Methods Between December 2007 and July 2008, 12 patients underwent posterior spinal instrumentation for spinal deformity correction using intraoperative CT-based image guidance. An intraoperative CT scan of the sterile surgical field was obtained after decompression and before instrumentation. Instrumentation was placed, and a postinstrumentation CT scan was obtained before wound closure to assess the accuracy of instrumentation placement and the potential need for revision. The accuracy of pedicle screw placement was later reviewed and recorded by independent observers. A comparison group of 14 patients who underwent thoracolumbar instrumentation utilizing fluoroscopy and postoperative CT scanning during the same time period was evaluated and included in this analysis. Results In the intraoperative CT-based image guidance group, a total of 164 thoracolumbar pedicle screws were placed. Two screws were found to have breached the pedicle wall (1.2%). Neither screw was deemed to need revision due to misplacement. In the comparison group, 211 pedicle screws were placed. Postoperative CT scanning revealed that 11 screws (5.2%) had breached the pedicle. One patient in the fluoroscopy group awoke with a radiculopathy attributed to a misplaced screw, which required revision. The difference in accuracy was statistically significant (p = 0.031). Conclusions Intraoperative CT-based image guidance for placement of thoracolumbar instrumentation has an accuracy that exceeds reported rates with other image guidance systems, such as virtual fluoroscopy and 3D isocentric C-arm-based stereotactic systems. Furthermore, with the use of intraoperative CT scanning, a postinstrumentation CT scan allows the surgeon to evaluate the accuracy of instrumentation before wound closure and revise as appropriate.


2021 ◽  
Author(s):  
Akihiko Hiyama ◽  
Taku Ukai ◽  
Satoshi Nomura ◽  
Masahiko Watanabe

Abstract BACKGROUND: The subcutaneous screw rod system, commonly known as the internal pelvic fixator (INFIX), is useful in managing unstable pelvic ring fractures. Conventional INFIX and transiliac–transsacral (TITS) screw techniques are performed using C-arm fluoroscopy. There have been problems with medical exposure and screw insertion accuracy with these techniques. This work describes new INFIX and TITS techniques using intraoperative computed tomography (CT) navigation and C-arm fluoroscopy for pelvic ring fracture.METHODS: Here is a typical case. An 86-year-old woman suffered an unstable pelvic ring fracture due to a fall from a height. INFIX and TITS screw fixation with intraoperative CT navigation was selected to optimize surgical invasiveness and proper implant placement.RESULTS: The patient was placed in a supine position on a Jackson table. An intraoperative CT navigation was imaged, and screws were inserted under the navigation. Postoperative X-rays and CT confirmed that the screw was inserted correctly. This technique was less invasive to the patient and had little radiation exposure to the surgeon. Rehabilitation of walking practice was started early after the surgery, and she was able to walk with the assistance of a walker by the time of transfer. CONCLUSIONS: The technique employed in our case study has the cumulative advantages of safety, accuracy, and reduced radiation exposure, together with the inherent advantages of functional outcomes of previously reported INFIX and TITS screw techniques. Further experience with this approach will refine this technique to overcome its limitations and facilitate its wider use.


Spine ◽  
2014 ◽  
Vol 39 (13) ◽  
pp. 1004-1009 ◽  
Author(s):  
Jimmy Villard ◽  
Yu-Mi Ryang ◽  
Andreas K. Demetriades ◽  
Andreas Reinke ◽  
Michael Behr ◽  
...  

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Akihiko Hiyama ◽  
Taku Ukai ◽  
Satoshi Nomura ◽  
Masahiko Watanabe

Abstract Background The subcutaneous screw rod system, commonly known as the internal pelvic fixator (INFIX), is useful in managing unstable pelvic ring fractures. Conventional INFIX and transiliac–transsacral (TITS) screw techniques are performed using C-arm fluoroscopy. There have been problems with medical exposure and screw insertion accuracy with these techniques. This work describes new INFIX and TITS techniques using intraoperative computed tomography (CT) navigation and C-arm fluoroscopy for pelvic ring fracture. Methods A typical case is presented in this study. An 86-year-old woman suffered from an unstable pelvic ring fracture due to a fall from a height. INFIX and TITS screw fixation with intraoperative CT navigation were selected to optimize surgical invasiveness and proper implant placement. Results The patient was placed in a supine position on a Jackson table. An intraoperative CT navigation was imaged, and screws were inserted under the navigation. Postoperative X-rays and CT confirmed that the screw was inserted correctly. This technique was less invasive to the patient and had little radiation exposure to the surgeon. Rehabilitation of walking practice was started early after the surgery, and she was able to walk with the assistance of a walker by the time of transfer. Conclusions The technique employed in our case study has the cumulative advantages of safety, accuracy, and reduced radiation exposure, together with the inherent advantages of functional outcomes of previously reported INFIX and TITS screw techniques. Further experience with this approach will refine this technique to overcome its limitations and facilitate its wider use.


2016 ◽  
Vol 16 (3) ◽  
pp. 343-354 ◽  
Author(s):  
Daniel Mendelsohn ◽  
Jason Strelzow ◽  
Nicolas Dea ◽  
Nancy L. Ford ◽  
Juliet Batke ◽  
...  

2017 ◽  
Vol 31 (6) ◽  
pp. 741-746 ◽  
Author(s):  
Edin Nevzati ◽  
Javier Fandino ◽  
Bawarjan Schatlo ◽  
Michel Heimberg ◽  
Serge Marbacher ◽  
...  

2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Jacob Riis ◽  
Rebecca R. Lehman ◽  
Robert A. Perera ◽  
John Ryan Quinn ◽  
Patricia Rinehart ◽  
...  

2021 ◽  
Vol 34 (1) ◽  
pp. 150-154
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato

OBJECTIVEMost surgeons are forced to turn their heads away from the surgical field to see various intraoperative support monitors. These movements may result in inconvenience to surgeons and lead to technical difficulties and potential errors. Wearable devices that can be attached to smart glasses or any glasses are novel visualization tools providing an alternative screen in front of the user’s eyes, allowing surgeons to keep their attention focused on the operative task without taking their eyes off the surgical field. The aim of the present study was to examine the feasibility of using glasses equipped with a wearable display device that transmits display monitor data during fluoroscopically guided minimally invasive spinal instrumentation surgery.METHODSIn this pilot prospective randomized study, 20 consecutively enrolled patients who underwent single-segment posterior lumbar interbody fusion (PLIF) at L5–S1 performed using the percutaneous pedicle screw technique were randomly divided into two groups, a group for which the surgeon used a wearable display device attached to regular glasses while performing surgery (smart glasses group) and a group for which the surgeon did not use such a device (nonglasses group). Real-time intraoperative fluoroscopic images were wirelessly transmitted to the display device attached to the surgeon’s glasses. The number of head turns performed by the surgeon to view the standard fluoroscopic monitor during procedures and the operative time, estimated blood loss, radiation exposure time, screw placement accuracy, and intraoperative complication rate were evaluated for comparison between the two groups.RESULTSThe number of surgeon head turns to view the fluoroscopic monitor in the smart glasses group was 0.10 ± 0.31 times, which was significantly fewer than the head turns in the nonglasses group (82.4 ± 32.5 times; p < 0.001). The operative and radiation exposure times in the smart glasses group were shorter than those in the nonglasses group (operative time 100.2 ± 10.4 vs 105.5 ± 14.6 minutes, radiation exposure time 38.6 ± 6.6 vs 41.8 ± 16.1 seconds, respectively), although the differences were not significant. Postoperative CT showed one screw perforation in the nonglasses group, and no intraoperative complications were observed in either group.CONCLUSIONSThis is, to the authors’ knowledge, the first report on the feasibility of using this wearable display device attached to glasses for fluoroscopically guided minimally invasive spinal instrumentation surgery. Smart glasses display devices such as this one may be a valid option to facilitate better concentration on operative tasks by improving ergonomic efficiency during surgery.


Sign in / Sign up

Export Citation Format

Share Document