A low-cost and sustainable cross-linked dextrin as aqueous binder for silicon anodes in lithium-ion batteries

2021 ◽  
Vol 373 ◽  
pp. 115807
Author(s):  
Jian Huang ◽  
Boyu Liu ◽  
Pan Zhang ◽  
Rui Li ◽  
Mingjiong Zhou ◽  
...  
2019 ◽  
Vol 11 (15) ◽  
pp. 14051-14058 ◽  
Author(s):  
Rongnan Guo ◽  
Shunlong Zhang ◽  
Hangjun Ying ◽  
Wentao Yang ◽  
Jianli Wang ◽  
...  

Author(s):  
Shaohua Lu ◽  
Weidong Hu ◽  
Xiaojun Hu

Due to their low cost and improved safety compared to lithium-ion batteries, sodium-ion batteries have attracted worldwide attention in recent decades.


2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


Author(s):  
Yuanyuan Yu ◽  
Jiadeng Zhu ◽  
Ke Zeng ◽  
Mengjin Jiang

Abstract text goes here. The abstract should be a single paragraph that summarises the content of the article Compared with nanostructured silicon (Si), Si microparticle (SiMP) has more commercial prospects...


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

Sign in / Sign up

Export Citation Format

Share Document