cycling performance
Recently Published Documents


TOTAL DOCUMENTS

1978
(FIVE YEARS 642)

H-INDEX

80
(FIVE YEARS 20)

2022 ◽  
Vol 431 ◽  
pp. 133985
Author(s):  
Zhiqiang Lan ◽  
Hong Fu ◽  
Ruolin Zhao ◽  
Haizhen Liu ◽  
Wenzheng Zhou ◽  
...  

Rare Metals ◽  
2022 ◽  
Author(s):  
Jian-Guo Zhao ◽  
Hong-Yan Zhou ◽  
Zhuan Hu ◽  
Ya-Wen Wu ◽  
Hong Jia ◽  
...  

2022 ◽  
pp. 1-18
Author(s):  
Iris Sachet ◽  
Niels Peter Brochner Nygaard ◽  
Gaël Guilhem ◽  
François Hug ◽  
Sylvain Dorel

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Wanbao Wu ◽  
Yiyang Bo ◽  
Deping Li ◽  
Yihong Liang ◽  
Jichuan Zhang ◽  
...  

Highlights A novel amide-based nonflammable electrolyte is proposed. The formation mechanism and solvation chemistry are investigated by molecular dynamics simulations and density functional theory. An inorganic/organic-rich solid electrolyte interphase with an abundance of LiF, Li3N and Li–N–C is in situ formed, leading to spherical lithium deposition. The amide-based electrolyte can enable stable cycling performance at room temperature and 60 ℃. Abstract The formation of lithium dendrites and the safety hazards arising from flammable liquid electrolytes have seriously hindered the development of high-energy-density lithium metal batteries. Herein, an emerging amide-based electrolyte is proposed, containing LiTFSI and butyrolactam in different molar ratios. 1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropylether and fluoroethylene carbonate are introduced into the amide-based electrolyte as counter solvent and additives. The well-designed amide-based electrolyte possesses nonflammability, high ionic conductivity, high thermal stability and electrochemical stability (> 4.7 V). Besides, an inorganic/organic-rich solid electrolyte interphase with an abundance of LiF, Li3N and Li–N–C is in situ formed, leading to spherical lithium deposition. The formation mechanism and solvation chemistry of amide-based electrolyte are further investigated by molecular dynamics simulations and density functional theory. When applied in Li metal batteries with LiFePO4 and LiMn2O4 cathode, the amide-based electrolyte can enable stable cycling performance at room temperature and 60 ℃. This study provides a new insight into the development of amide-based electrolytes for lithium metal batteries.


2022 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Rúni Bláfoss ◽  
Jonas Rikardo ◽  
Asger Ø. Andersen ◽  
Lars G. Hvid ◽  
Lars L. Andersen ◽  
...  

2022 ◽  
Vol 3 ◽  
Author(s):  
Jared Ferguson ◽  
Amir Hadid ◽  
Yoram Epstein ◽  
Dennis Jensen

Purpose: Examine the effect of synthetic fabrics (SYN, 60% polyester: 40% nylon) vs. 100% cotton fabric (CTN) on the 20-km cycling time trial (20 kmCTT) performance of competitive cyclists and triathletes.Methods: In this randomized controlled crossover study, 15 adults (5 women) aged 29.6 ± 2.7 years (mean ± SE) with a peak rate of O2 consumption of 60.0 ± 2.0 ml/kg/min completed a 20 kmCTT under ambient laboratory conditions (24.3 ± 0.7°C and 17 ± 7% relative humidity) with a simulated wind of ~3 m/s while wearing SYN or CTN clothing ensembles. Both ensembles were of snowflake mesh bi-layer construction and consisted of a loose-fitting long-sleeved shirt with full-length trousers.Results: Participants maintained a significantly (p < 0.05) higher cycling speed and power output over the last 6-km of the 20 kmCTT while wearing the SYN vs. CTN ensemble (e.g., by 0.98 km/h and 18.4 watts at the 20-km mark). Consequently, 20 kmCTT duration was significantly reduced by 15.7 ± 6.8 sec or 0.8 ± 0.3% during SYN vs. CTN trials (p < 0.05). Improved 20 kmCTT performance with SYN vs. CTN clothing could not be explained by concurrent differences in esophageal temperature, sweat rate, ratings of perceived exertion and/or cardiometabolic responses to exercise. However, it was accompanied by significantly lower mean skin temperatures (~1°C) and more favorable ratings of perceived clothing comfort and thermal sensation during exercise.Conclusion: Under the experimental conditions of the current study, athletic clothing made of synthetic fabrics significantly improved the 20 kmCTT performance of endurance-trained athletes by optimizing selected thermoregulatory and perceptual responses to exercise.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 322
Author(s):  
Ryo Shomura ◽  
Ryota Tamate ◽  
Shoichi Matsuda

Lithium metal anode is regarded as the ultimate negative electrode material due to its high theoretical capacity and low electrochemical potential. However, the significantly high reactivity of Li metal limits the practical application of Li metal batteries. To improve the stability of the interface between Li metal and an electrolyte, a facile and scalable blade coating method was used to cover the commercial polyethylene membrane separator with an inorganic/organic composite solid electrolyte layer containing lithium-ion-conducting ceramic fillers. The coated separator suppressed the interfacial resistance between the Li metal and the electrolyte and consequently prolonged the cycling stability of deposition/dissolution processes in Li/Li symmetric cells. Furthermore, the effect of the coating layer on the discharge/charge cycling performance of lithium-oxygen batteries was investigated.


Author(s):  
Maiyong Zhu ◽  
Chengyu Tu ◽  
Xuan Li ◽  
Qiao Luo ◽  
Songjun Li

Searching electrodes with high specific capacitance, rate capability, long cycling life and economic efficiency is central for next-generation supercapacitors. In this work, a hybrid electrode consisting of MnO and N-doped...


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
David Jeker ◽  
Pascale Claveau ◽  
Mohamed El Fethi Abed ◽  
Thomas A. Deshayes ◽  
Claude Lajoie ◽  
...  

We compared the effect of programmed (PFI) and thirst-driven (TDFI) fluid intake on prolonged cycling performance and exercise associated muscle cramps (EAMC). Eight male endurance athletes (26 ± 6 years) completed two trials consisting of 5 h of cycling at 61% V˙O2peak followed by a 20 km time-trial (TT) in a randomized crossover sequence at 30 °C, 35% relative humidity. EAMC was assessed after the TT with maximal voluntary isometric contractions of the shortened right plantar flexors. Water intake was either programmed to limit body mass loss to 1% (PFI) or consumed based on perceived thirst (TDFI). Body mass loss reached 1.5 ± 1.0% for PFI and 2.5 ± 0.9% for TDFI (p = 0.10). Power output during the 20 km TT was higher (p < 0.05) for PFI (278 ± 41 W) than TDFI (263 ± 39 W), but the total performance time, including the breaks to urinate, was similar (p = 0.48) between conditions. The prevalence of EAMC of the plantar flexors was similar between the drinking conditions. Cyclists competing in the heat for over 5 h may benefit from PFI aiming to limit body mass loss to <2% when a high intensity effort is required in the later phase of the race and when time lost for urination is not a consideration.


Sign in / Sign up

Export Citation Format

Share Document