A study at room temperature and 55°C on the charge–discharge characteristics of Si(100−x)Alx thin film anode for Li-ion batteries

2013 ◽  
Vol 215 ◽  
pp. 79-84 ◽  
Author(s):  
Yueh-Ting Shih ◽  
Chao-Han Wu ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui ◽  
Li-Hui Chen
2011 ◽  
Vol 287-290 ◽  
pp. 1283-1289 ◽  
Author(s):  
Yong Huan Ren ◽  
Chun Wei Yang ◽  
Bo Rong Wu ◽  
Cun Zhong Zhang ◽  
Shi Chen ◽  
...  

In order to overcome the limitation of Li-ion batteries at low temperature, series of electrolytes are prepared. Specially,FEC is chose to work as electrolyte solvent to enhance its poor performance. Electrolytes are composed of EC, PC, EMC and FEC, while VC is added as additive. Electrolytes with different ratio are examined, then the electrolyte with the best conductivity is studied in detail. Its characters are evaluated by CV, EIS and charge/discharge tests et al. The discharge curves of LiCo1/3Ni1/3Mn1/3O2/Li show that battery with this FEC-based electrolyte at 233K could yield 51% of room temperature capacity. Most obviously, MCMB/Li half cell with this electrolyte could fill 91% of its normal capacity at 233K while batteries barely charge any with traditional electrolyte(LiPF6/EC+DMC(1:1 in volume)). This nice charge behavior won’t emerge unless the conductivity could basically meet the demand at 233K. The property of FEC-based electrolyte outweighs commercialized electrolyte as this article confirms.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Norihiro Shimoi ◽  
Kazuyuki Tohji

Si is essential as an active material in Li-ion batteries because it provides both high charge and optimal cycling characteristics. A composite of Si particles, Cu particles, and pure H2O was realized to serve as an anode active material and optimize the charge–discharge characteristics of Li-ion batteries. The composite was produced by grinding using a planetary ball mill machine, which allowed for homogenous dispersion of nanoscale Cu3Si as Si–Cu alloy grains and nanoscale Si grains in each poly-Si particle produced. Furthermore, some Si particles were oxidized by H2O, and oxidized Si was distributed throughout the composite, mainly as silicon monoxide. As a result, each Si particle included silicon monoxide and conductive Cu3Si materials, allowing for effective optimization of the recharging and charge-discharge characteristics. Thus, a new and simple process was realized for synthesizing a Si active material composited with silicon oxides, including silicon monoxide. This Si-rich conductive material is suitable as an anode for Li-ion batteries with high charge and optimized cycling properties.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Kuan-Jen Chen ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui ◽  
Ren-Syuan Xiao

Magnesium-nickel (Mg-Ni) powders are used as the anode materials for secondary lithium (Li) ion batteries. Mg-Ni powders with ratios of 1 : 1 (Mg : Ni) are prepared and their structure and electrochemical behavior at room temperature and 55°C are investigated. The results show that adding Ni powders to Mg powders can reduce the charge-discharge capacities and improve cycling life. In charge-discharge cycle testing at 55°C, the Li ion concentration gradually increased with increasing the duration of electrochemical reactions, indicating that the charge-discharge capacities increase with increment of cycling number. The formation of a solid electrolyte interface (SEI) layer restrains Mg ions from dissolving into the electrolyte and thus improves the charge-discharge capacities at high temperature.


2021 ◽  
pp. 2002125
Author(s):  
Jokin Rikarte ◽  
Iñaki Madinabeitia ◽  
Giorgio Baraldi ◽  
Francisco José Fernández‐Carretero ◽  
Víctor Bellido‐González ◽  
...  

2013 ◽  
Vol 544 ◽  
pp. 28-32 ◽  
Author(s):  
Chao-Han Wu ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui ◽  
Li-Hui Chen

Sign in / Sign up

Export Citation Format

Share Document