scholarly journals Chaos synchronization for a class of discrete dynamical systems on the N-dimensional torus

2006 ◽  
Vol 55 (3) ◽  
pp. 223-231 ◽  
Author(s):  
Lionel Rosier ◽  
Gilles Millérioux ◽  
Gérard Bloch
Author(s):  
Lionel Rosier

In this chapter, we consider a class of discrete dynamical systems defined on the homogeneous space associated with a regular tiling of RN, whose most familiar example is provided by the N-dimensional torus TN. It is proved that any dynamical system in this class is chaotic in the sense of Devaney, and that it admits at least one positive Lyapunov exponent. Next, a chaos-synchronization mechanism is introduced and used for masking information in a communication setup.


Entropy ◽  
2017 ◽  
Vol 19 (7) ◽  
pp. 351 ◽  
Author(s):  
Baogui Xin ◽  
Li Liu ◽  
Guisheng Hou ◽  
Yuan Ma

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 616
Author(s):  
Marek Berezowski ◽  
Marcin Lawnik

Research using chaos theory allows for a better understanding of many phenomena modeled by means of dynamical systems. The appearance of chaos in a given process can lead to very negative effects, e.g., in the construction of bridges or in systems based on chemical reactors. This problem is important, especially when in a given dynamic process there are so-called hidden attractors. In the scientific literature, we can find many works that deal with this issue from both the theoretical and practical points of view. The vast majority of these works concern multidimensional continuous systems. Our work shows these attractors in discrete systems. They can occur in Newton’s recursion and in numerical integration.


1993 ◽  
Vol 03 (02) ◽  
pp. 293-321 ◽  
Author(s):  
JÜRGEN WEITKÄMPER

Real cellular automata (RCA) are time-discrete dynamical systems on ℝN. Like cellular automata they can be obtained from discretizing partial differential equations. Due to their structure RCA are ideally suited to implementation on parallel computers with a large number of processors. In a way similar to the Hénon mapping, the system we consider here embeds the logistic mapping in a system on ℝN, N>1. But in contrast to the Hénon system an RCA in general is not invertible. We present some results about the bifurcation structure of such systems, mostly restricting ourselves, due to the complexity of the problem, to the two-dimensional case. Among others we observe cascades of cusp bifurcations forming generalized crossroad areas and crossroad areas with the flip curves replaced by Hopf bifurcation curves.


Sign in / Sign up

Export Citation Format

Share Document