Continental like crust beneath the Andaman Island through joint inversion of receiver function and surface wave from ambient seismic noise

2016 ◽  
Vol 687 ◽  
pp. 129-138 ◽  
Author(s):  
Sandeep Gupta ◽  
Kajaljyoti Borah ◽  
Gokul Saha
2019 ◽  
Vol 24 (1) ◽  
pp. 101-120
Author(s):  
Kajetan Chrapkiewicz ◽  
Monika Wilde-Piórko ◽  
Marcin Polkowski ◽  
Marek Grad

AbstractNon-linear inverse problems arising in seismology are usually addressed either by linearization or by Monte Carlo methods. Neither approach is flawless. The former needs an accurate starting model; the latter is computationally intensive. Both require careful tuning of inversion parameters. An additional challenge is posed by joint inversion of data of different sensitivities and noise levels such as receiver functions and surface wave dispersion curves. We propose a generic workflow that combines advantages of both methods by endowing the linearized approach with an ensemble of homogeneous starting models. It successfully addresses several fundamental issues inherent in a wide range of inverse problems, such as trapping by local minima, exploitation of a priori knowledge, choice of a model depth, proper weighting of data sets characterized by different uncertainties, and credibility of final models. Some of them are tackled with the aid of novel 1D checkerboard tests—an intuitive and feasible addition to the resolution matrix. We applied our workflow to study the south-western margin of the East European Craton. Rayleigh wave phase velocity dispersion and P-wave receiver function data were gathered in the passive seismic experiment “13 BB Star” (2013–2016) in the area of the crust recognized by previous borehole and refraction surveys. Final models of S-wave velocity down to 300 km depth beneath the array are characterized by proximity in the parameter space and very good data fit. The maximum value in the mantle is higher by 0.1–0.2 km/s than reported for other cratons.


2015 ◽  
Vol 13 (5) ◽  
pp. 447-455 ◽  
Author(s):  
Taghi Shirzad ◽  
Z. Hossein Shomali ◽  
Mojtaba Naghavi ◽  
Rahim Norouzi

2008 ◽  
Vol 9 (5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sihua Zheng ◽  
Xinlei Sun ◽  
Xiaodong Song ◽  
Yingjie Yang ◽  
Michael H. Ritzwoller

2020 ◽  
Author(s):  
Wei-An Chao ◽  
Chun-Hung Lin ◽  
Che-Ming Yang ◽  
Keng-Hao Kang ◽  
Yu-Ting Kuo ◽  
...  

<p>Deep-seated landslide is one of most catastrophic and disastrous geohazards. Probing the spatial extent and basal sliding interface of the deep-seated landslide is not only particularly critical for understanding landslide size (i.e., volume and collapsed area), but also crucial for landslide hazard assessment. The conventional investigations such as the borehole drilling and seismic profiles are usually challenging for investigating landslide body comprehensively in space due to the expensive cost and the limitations of geophysical exploration. Recent studies of ambient seismic noise monitoring have provided an additional tool to monitor the subsurface medium in a non-invasive and relatively inexpensive way, which advances the investigating landslide geological structure. Here, we applied the ambient seismic noise monitoring technique to deep-seated landslide at Fanfan, Ilan area in northeastern Taiwan. The multiple geophysical, geotechnical and geodetic approaches including active multi-channel analysis of surface wave (MASW), real-time kinematic (RTK) measurement, campaign GPS, borehole time-domain reflectometer (TDR) and groundwater level (GWL) gauge are adopted during our monitoring period. A series of relation analysis found that the variations of frequency-dependent seismic velocity changes (dv/v), TDR sliding behavior, time series of groundwater level associated to two heavy rainfall episodes concurrently. With the available shear-wave velocity model (V<sub>S</sub>) derived from MASW, the depth range sensitive to different frequency band for surface wave can be certainly determined. Clear 3-5 Hz dv/v measurement at seismic station of V01 collocated with GWL gauge can be found with the largest reduction of ~ 1%, coinciding with 1 m GWL increasing. Models with different thickness layer (H), basal depth (d), V<sub>s</sub> perturbation (dV<sub>s</sub>) were exercised, and a good fit between predicted spectral dv/v and the frequency-dependent dv/v measurements at seismic station V02 with H = 0.5 m, d = 21 m and dV<sub>s </sub>= 0.5. TDR measurement showed the obvious sliding signals is consistent with the shear zones identified by borehole log with the depth ranging from 48 to 50 m. These results demonstrate that multidisciplinary perspectives are needed to increase a better understanding of landslide structure. Consequently, a model linking variations of dv/v and TDR measurements is proposed to better understand sliding characteristics, which could potentially toward failure prediction of deep-seated landslide.</p>


2021 ◽  
Author(s):  
◽  
Rachel Heckels

<p>Ambient seismic noise is used to examine the spatial and temporal surface wave velocity structures and ambient seismic noise fields in the vicinity of different fault zone environments. This study focuses on two distinct regions of central South Island, New Zealand. The Canterbury Plains is a sedimentary basin with many minor faults, which was considered to have low seismic hazard prior to the 2010 – 2011 Canterbury earthquake sequence. We focus on the time period immediately following the 2010 Darfield earthquake, which ruptured the previously unmapped Greendale Fault. The second region of interest is the central Southern Alps. The locked portion of the Alpine Fault currently poses one of the largest seismic hazards for New Zealand. The wealth of data from both permanent and temporary seismic deployments in these regions make them ideal areas in which to assess the effectiveness of ambient noise for velocity modelling in regions surrounding faults at different stages of their seismic cycles.  Temporal velocity changes are measured following the Mw 7.1 Darfield earthquake of 4 September 2010 in the Canterbury Plains. Nine-component cross-correlations are computed from temporary and permanent seismic stations lying on and surrounding the Greendale Fault. Using the Moving-Window Cross-Spectral method, surface wave velocity changes are calculated for the four months immediately following the earthquake until 10 January 2011, for 0.1 — 1.0 Hz. An average increase in seismic velocity of 0.14 ± 0.04 % is determined throughout the region, providing the first such estimate of postseismic relaxation rates in Canterbury. Depth analyses further showed that velocity changes are confined to the uppermost 5 km of the subsurface and we attribute this to postseismic relaxation via crack-healing of the Greendale Fault and throughout the surrounding region.  Rayleigh and Love wave dispersion is examined throughout the Canterbury region. Multi-component cross-correlation functions are analysed for group and phase dispersion curves. These are inverted using frequency-time analysis for 2-D phase and group velocity maps of Rayleigh and Love waves. A high-velocity zone to the southeast of the region coincides with volcanic rocks of Banks Peninsula. Dispersion curves generated from the surface wave tomography are further inverted for one-dimensional shear velocity profiles. These models show a thin, low-velocity near surface layer consistent with the basin sediments, which thins towards the foothills of the Southern Alps. A near-surface damage zone is identified along the length of the Greendale Fault, with consistent reduced Vs velocities to depth of up to 5 km.  Surface and shear wave velocity maps are computed for the central Southern Alps to image the seismic structure of the region. Tomographic surface maps at periods of 5 – 12 s are produced from dispersion measurements of three-component cross-correlation functions. At periods of 5 – 8 s a strong NE-SW trending velocity contrast highlights the Alpine Fault. One-dimensional shear velocity models, computed from the surface wave maps, are in agreement with previous models produced by other conventional methods. An analysis of surface wave amplitudes through signal-to-noise ratios of cross-correlations reveals strong directional effects. Calculated signal-to-noise ratios are up to eight times higher for surface waves travelling north-west than for waves travelling to the south or east. We attribute this to a combination of more energetic ocean wave signals from the Southern Ocean compared to the Tasman Sea.</p>


Sign in / Sign up

Export Citation Format

Share Document