scholarly journals Using ambient seismic noise to study temporal and spatial surface wave velocity structures and ambient noise field characteristics of central South Island, New Zealand

2021 ◽  
Author(s):  
◽  
Rachel Heckels

<p>Ambient seismic noise is used to examine the spatial and temporal surface wave velocity structures and ambient seismic noise fields in the vicinity of different fault zone environments. This study focuses on two distinct regions of central South Island, New Zealand. The Canterbury Plains is a sedimentary basin with many minor faults, which was considered to have low seismic hazard prior to the 2010 – 2011 Canterbury earthquake sequence. We focus on the time period immediately following the 2010 Darfield earthquake, which ruptured the previously unmapped Greendale Fault. The second region of interest is the central Southern Alps. The locked portion of the Alpine Fault currently poses one of the largest seismic hazards for New Zealand. The wealth of data from both permanent and temporary seismic deployments in these regions make them ideal areas in which to assess the effectiveness of ambient noise for velocity modelling in regions surrounding faults at different stages of their seismic cycles.  Temporal velocity changes are measured following the Mw 7.1 Darfield earthquake of 4 September 2010 in the Canterbury Plains. Nine-component cross-correlations are computed from temporary and permanent seismic stations lying on and surrounding the Greendale Fault. Using the Moving-Window Cross-Spectral method, surface wave velocity changes are calculated for the four months immediately following the earthquake until 10 January 2011, for 0.1 — 1.0 Hz. An average increase in seismic velocity of 0.14 ± 0.04 % is determined throughout the region, providing the first such estimate of postseismic relaxation rates in Canterbury. Depth analyses further showed that velocity changes are confined to the uppermost 5 km of the subsurface and we attribute this to postseismic relaxation via crack-healing of the Greendale Fault and throughout the surrounding region.  Rayleigh and Love wave dispersion is examined throughout the Canterbury region. Multi-component cross-correlation functions are analysed for group and phase dispersion curves. These are inverted using frequency-time analysis for 2-D phase and group velocity maps of Rayleigh and Love waves. A high-velocity zone to the southeast of the region coincides with volcanic rocks of Banks Peninsula. Dispersion curves generated from the surface wave tomography are further inverted for one-dimensional shear velocity profiles. These models show a thin, low-velocity near surface layer consistent with the basin sediments, which thins towards the foothills of the Southern Alps. A near-surface damage zone is identified along the length of the Greendale Fault, with consistent reduced Vs velocities to depth of up to 5 km.  Surface and shear wave velocity maps are computed for the central Southern Alps to image the seismic structure of the region. Tomographic surface maps at periods of 5 – 12 s are produced from dispersion measurements of three-component cross-correlation functions. At periods of 5 – 8 s a strong NE-SW trending velocity contrast highlights the Alpine Fault. One-dimensional shear velocity models, computed from the surface wave maps, are in agreement with previous models produced by other conventional methods. An analysis of surface wave amplitudes through signal-to-noise ratios of cross-correlations reveals strong directional effects. Calculated signal-to-noise ratios are up to eight times higher for surface waves travelling north-west than for waves travelling to the south or east. We attribute this to a combination of more energetic ocean wave signals from the Southern Ocean compared to the Tasman Sea.</p>

2021 ◽  
Author(s):  
◽  
Rachel Heckels

<p>Ambient seismic noise is used to examine the spatial and temporal surface wave velocity structures and ambient seismic noise fields in the vicinity of different fault zone environments. This study focuses on two distinct regions of central South Island, New Zealand. The Canterbury Plains is a sedimentary basin with many minor faults, which was considered to have low seismic hazard prior to the 2010 – 2011 Canterbury earthquake sequence. We focus on the time period immediately following the 2010 Darfield earthquake, which ruptured the previously unmapped Greendale Fault. The second region of interest is the central Southern Alps. The locked portion of the Alpine Fault currently poses one of the largest seismic hazards for New Zealand. The wealth of data from both permanent and temporary seismic deployments in these regions make them ideal areas in which to assess the effectiveness of ambient noise for velocity modelling in regions surrounding faults at different stages of their seismic cycles.  Temporal velocity changes are measured following the Mw 7.1 Darfield earthquake of 4 September 2010 in the Canterbury Plains. Nine-component cross-correlations are computed from temporary and permanent seismic stations lying on and surrounding the Greendale Fault. Using the Moving-Window Cross-Spectral method, surface wave velocity changes are calculated for the four months immediately following the earthquake until 10 January 2011, for 0.1 — 1.0 Hz. An average increase in seismic velocity of 0.14 ± 0.04 % is determined throughout the region, providing the first such estimate of postseismic relaxation rates in Canterbury. Depth analyses further showed that velocity changes are confined to the uppermost 5 km of the subsurface and we attribute this to postseismic relaxation via crack-healing of the Greendale Fault and throughout the surrounding region.  Rayleigh and Love wave dispersion is examined throughout the Canterbury region. Multi-component cross-correlation functions are analysed for group and phase dispersion curves. These are inverted using frequency-time analysis for 2-D phase and group velocity maps of Rayleigh and Love waves. A high-velocity zone to the southeast of the region coincides with volcanic rocks of Banks Peninsula. Dispersion curves generated from the surface wave tomography are further inverted for one-dimensional shear velocity profiles. These models show a thin, low-velocity near surface layer consistent with the basin sediments, which thins towards the foothills of the Southern Alps. A near-surface damage zone is identified along the length of the Greendale Fault, with consistent reduced Vs velocities to depth of up to 5 km.  Surface and shear wave velocity maps are computed for the central Southern Alps to image the seismic structure of the region. Tomographic surface maps at periods of 5 – 12 s are produced from dispersion measurements of three-component cross-correlation functions. At periods of 5 – 8 s a strong NE-SW trending velocity contrast highlights the Alpine Fault. One-dimensional shear velocity models, computed from the surface wave maps, are in agreement with previous models produced by other conventional methods. An analysis of surface wave amplitudes through signal-to-noise ratios of cross-correlations reveals strong directional effects. Calculated signal-to-noise ratios are up to eight times higher for surface waves travelling north-west than for waves travelling to the south or east. We attribute this to a combination of more energetic ocean wave signals from the Southern Ocean compared to the Tasman Sea.</p>


2015 ◽  
Vol 13 (5) ◽  
pp. 447-455 ◽  
Author(s):  
Taghi Shirzad ◽  
Z. Hossein Shomali ◽  
Mojtaba Naghavi ◽  
Rahim Norouzi

2021 ◽  
Author(s):  
◽  
Francesco Civilini

<p>We present three projects that use different bandwidths of the ambient noise spectrum to solve geophysical problems. Specifically, we use signals within the noise field to determine surface and shear wave velocities, image the shallow and deep crust, and monitor time-dependent deformation resulting from geothermal fluid injection and extraction.  Harrat Al-Madinah, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, is imaged using shear-velocities obtained from natural ambient seismic noise. To our knowledge, this project is the first analysis of Saudi Arabia structure using ambient noise methods. Surface wave arrivals are extracted from a year's worth of station-pair cross-correlations, which are approximations of the empirical Green's function of the interstation path. We determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution and resolve a zone of slow surface wave velocity south-east of the city of Medina, which is spatially correlated with the most recent historical eruption (the 1256 CE Medina eruption). Dispersion curves are calculated at each grid-point of the surface-wave velocity maps and inverted to obtain measurements of shear-velocity with depth. The 1D velocity models are then used to produce average shear-velocity models for the volcanic field. A shear-velocity increase ranging from 0.5 to 1.0 km/s, suggesting a layer interface, is detected at approximately 20 km depth and compared to P-wave measurement from a previous refraction study. We compute cross-section profiles by interpolating the inversions into a pseudo-3D model and resolve a zone of slow shear-velocity below the 1256 CE eruption location. These areas are also spatially correlated with low values of Bouguer gravity. We hypothesize that the low shear-velocity and gravity measurements are caused by fluids and fractures created from prior volcanic eruptions.   We use the coda of cross-correlations extracted from ambient noise to determine shear-velocity changes at Rotokawa and Ngatamariki, two electricity producing geothermal fields located in the North Island of New Zealand. Stacks of cross correlations between stations prior to the onset of production are compared to cross correlations of moving stacks in time periods of well stimulation and the onset of electricity production using the Moving Window Cross Spectral technique. An increase between 0.05% to 0.1% of shear-velocity is detected at Rotokawa coinciding with an increase of injection. The shear-velocity subsequently decreases by approximately 0.1% when the rate of production surpasses the rate of injection. A similar amplitude shear-velocity increase is detected at Ngatamariki during the beginning of injection. After the initial increase, the shear-velocity at Ngatamariki fluctuates in response to differences in injection and production rates. A straight-ray pseudo-tomography analysis is conducted at the geothermal fields, which reveals that localized positive velocity changes are co-located with injection wells.  Lastly, we use ambient noise and active sources at the Ngatamariki geothermal field to determine the structure of the top 200 meters using the Refraction Microtremor technique. We deployed a linear 72-channel array of vertical geophones with ten meter spacing at two locations of the geothermal field and determine average 1D and 2D shear-velocity profiles. We were able to image depths between 57 to 93 meters for 2D profiles and up to 165 meters for 1D profiles. A shear-velocity anomaly was detected across one of the lines that coincided with the inferred location of a fault determined from nearby well logs. This suggests that the method can be used to cheaply and quickly constrain near-surface geology at geothermal fields, where ambient noise is abundant and typical reflection and refraction surveys require large inputs of energy and are hindered by attenuation and scattering in near-surface layers.</p>


2021 ◽  
Author(s):  
◽  
Francesco Civilini

<p>We present three projects that use different bandwidths of the ambient noise spectrum to solve geophysical problems. Specifically, we use signals within the noise field to determine surface and shear wave velocities, image the shallow and deep crust, and monitor time-dependent deformation resulting from geothermal fluid injection and extraction.  Harrat Al-Madinah, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, is imaged using shear-velocities obtained from natural ambient seismic noise. To our knowledge, this project is the first analysis of Saudi Arabia structure using ambient noise methods. Surface wave arrivals are extracted from a year's worth of station-pair cross-correlations, which are approximations of the empirical Green's function of the interstation path. We determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution and resolve a zone of slow surface wave velocity south-east of the city of Medina, which is spatially correlated with the most recent historical eruption (the 1256 CE Medina eruption). Dispersion curves are calculated at each grid-point of the surface-wave velocity maps and inverted to obtain measurements of shear-velocity with depth. The 1D velocity models are then used to produce average shear-velocity models for the volcanic field. A shear-velocity increase ranging from 0.5 to 1.0 km/s, suggesting a layer interface, is detected at approximately 20 km depth and compared to P-wave measurement from a previous refraction study. We compute cross-section profiles by interpolating the inversions into a pseudo-3D model and resolve a zone of slow shear-velocity below the 1256 CE eruption location. These areas are also spatially correlated with low values of Bouguer gravity. We hypothesize that the low shear-velocity and gravity measurements are caused by fluids and fractures created from prior volcanic eruptions.   We use the coda of cross-correlations extracted from ambient noise to determine shear-velocity changes at Rotokawa and Ngatamariki, two electricity producing geothermal fields located in the North Island of New Zealand. Stacks of cross correlations between stations prior to the onset of production are compared to cross correlations of moving stacks in time periods of well stimulation and the onset of electricity production using the Moving Window Cross Spectral technique. An increase between 0.05% to 0.1% of shear-velocity is detected at Rotokawa coinciding with an increase of injection. The shear-velocity subsequently decreases by approximately 0.1% when the rate of production surpasses the rate of injection. A similar amplitude shear-velocity increase is detected at Ngatamariki during the beginning of injection. After the initial increase, the shear-velocity at Ngatamariki fluctuates in response to differences in injection and production rates. A straight-ray pseudo-tomography analysis is conducted at the geothermal fields, which reveals that localized positive velocity changes are co-located with injection wells.  Lastly, we use ambient noise and active sources at the Ngatamariki geothermal field to determine the structure of the top 200 meters using the Refraction Microtremor technique. We deployed a linear 72-channel array of vertical geophones with ten meter spacing at two locations of the geothermal field and determine average 1D and 2D shear-velocity profiles. We were able to image depths between 57 to 93 meters for 2D profiles and up to 165 meters for 1D profiles. A shear-velocity anomaly was detected across one of the lines that coincided with the inferred location of a fault determined from nearby well logs. This suggests that the method can be used to cheaply and quickly constrain near-surface geology at geothermal fields, where ambient noise is abundant and typical reflection and refraction surveys require large inputs of energy and are hindered by attenuation and scattering in near-surface layers.</p>


2005 ◽  
Vol 297-300 ◽  
pp. 1998-2003
Author(s):  
Jai Won Byeon ◽  
C.S. Kim ◽  
J.H. Song ◽  
S.I. Kwun

For the quality monitoring and reliable application of stationary gas turbine blade (vane), near surface damages in the isothermally degraded vein material (i.e., cobalt based superalloy) were characterized by ultrasonic surface wave technique. Surface wave velocity and attenuation were measured for the artificially degraded specimens at 1100°C, together with microstructural analysis and micro-hardness measurement. Surface wave velocity increased with thermal degradation time, which was attributed to the increasing depletion of solute chromium near the surface. Strong frequency dependence of surface wave velocity was observed in the specimens with surface depletion layer. Attenuation coefficient of surface wave increased with increasing degradation time. The potential of ultrasonic surface wave technique to assess near surface damages in vein material was discussed with an emphasis on the relationship between the microstructural damage and the governing principles of ultrasonic response.


2020 ◽  
Vol 91 (6) ◽  
pp. 3269-3277 ◽  
Author(s):  
Katrin Löer ◽  
Tania Toledo ◽  
Gianluca Norini ◽  
Xin Zhang ◽  
Andrew Curtis ◽  
...  

Abstract We present a 1D shear-velocity model for Los Humeros geothermal field (Mexico) obtained from three-component beamforming of ambient seismic noise, imaging for the first time the bottom of the sedimentary basement ∼5  km below the volcanic caldera, as well as the brittle-ductile transition at ∼10  km depth. Rayleigh-wave dispersion curves are extracted from ambient seismic noise measurements and inverted using a Markov chain Monte Carlo scheme. The resulting probability density function provides the shear-velocity distribution down to 15 km depth, hence, much deeper than other techniques applied in the area. In the upper 4 km, our model conforms to a profile from local seismicity analysis and matches geological structure inferred from well logs, which validates the methodology. Complementing information from well logs and outcrops at the near surface, discontinuities in the seismic profile can be linked to geological transitions allowing us to infer structural information of the deeper subsurface. By constraining the extent of rocks with brittle behavior and permeability conditions at greater depths, our results are of paramount importance for the future exploitation of the reservoir and provide a basis for the geological and thermodynamic modeling of active superhot geothermal systems, in general.


Sign in / Sign up

Export Citation Format

Share Document