Pheromone synthesis. Part 245: Synthesis and chromatographic analysis of the four stereoisomers of 4,8-dimethyldecanal, the male aggregation pheromone of the red flour beetle, Tribolium castaneum

Tetrahedron ◽  
2011 ◽  
Vol 67 (1) ◽  
pp. 201-209 ◽  
Author(s):  
Kazuaki Akasaka ◽  
Shigeyuki Tamogami ◽  
Richard W. Beeman ◽  
Kenji Mori
2020 ◽  
Vol 16 (4) ◽  
pp. 404-412 ◽  
Author(s):  
Ihab Alnajim ◽  
Manjree Agarwal ◽  
Tao Liu ◽  
YongLin Ren

Background: The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is one of the world’s most serious stored grain insect pests. A method of early and rapid identification of red flour beetle in stored products is urgently required to improve control options. Specific chemical signals identified as Volatile Organic Compounds (VOCs) that are released by the beetle can serve as biomarkers. Methods: The Headspace Solid Phase Microextraction (HS-SPME) technique and the analytical conditions with GC and GCMS were optimised and validated for the determination of VOCs released from T. castaneum. Results: The 50/30 μm DVB/CAR/PDMS SPME fibre was selected for extraction of VOCs from T. castaneum. The efficiency of extraction of VOCs was significantly affected by the extraction time, temperature, insect density and type of SPME fibre. Twenty-three VOCs were extracted from insects in 4 mL flask at 35 ± 1°C for four hours of extraction and separated and identified with gas chromatography-mass spectroscopy. The major VOCs or chemical signals from T. castaneum were 1-pentadecene, p-Benzoquinone, 2-methyl- and p-Benzoquinone, 2-ethyl. Conclusion: This study showed that HS-SPME GC technology is a robust and cost-effective method for extraction and identification of the unique VOCs produced by T. castaneum. Therefore, this technology could lead to a new approach in the timely detection of T. castaneum and its subsequent treatment.


Sign in / Sign up

Export Citation Format

Share Document