scholarly journals TM5275 prolongs secreted tissue plasminogen activator retention and enhances fibrinolysis on vascular endothelial cells

2013 ◽  
Vol 132 (1) ◽  
pp. 100-105 ◽  
Author(s):  
Hideki Yasui ◽  
Yuko Suzuki ◽  
Hideto Sano ◽  
Takafumi Suda ◽  
Kingo Chida ◽  
...  
2008 ◽  
Vol 18 (3) ◽  
pp. 186-190 ◽  
Author(s):  
Takeshi Hayashi ◽  
Asahi Kamogawa ◽  
Shinsei Ro ◽  
Kai Yamaguchi ◽  
Yutaro Kobayashi ◽  
...  

1988 ◽  
Vol 59 (02) ◽  
pp. 269-272 ◽  
Author(s):  
M B Grant ◽  
C Guay ◽  
R Lottenberg

SummaryDesmopressin acetate administration markedly stimulates release of tissue plasminogen activator (t-PA) from vascular endothelial cells. The mechanism for this effect is unknown. Because infusion of epinephrine has been shown to increase t-PA levels, we examined the role of endogenous catecholamine mediation of t-PA release by desmopressin. Intravenous desmopressin acetate (0.3 μg/kg) was infused over 30 min in 9 controls and 11 subjects with diabetes mellitus, a condition associated with abnormalities of the fibrinolytic system. Plasma was collected in the supine, overnight fasted state at 15 min intervals (0-60 min) for measurement of t-PA activity, t-PA antigen and fractionated catecholamines. t-PA activity peaked at 30-45 min and subsequently decreased. The norepinephrine levels paralleled the t-PA activity. t-PA activity increased 10-fold from 0.14 ± .12 to 1.49 ± 0.79 IU/ml (Mean ± SD) and plasma norepinephrine increased 2- fold from 426 ± 90 to 780 ± 292 pg/ml. However, epinephrine and dopamine levels did not change significantly. The response to desmopressin of control and diabetic subjects was not shown to differ and their data were combined. We conclude that desmopressin increases plasma norepinephrine in addition to t-PA and that the parallel time course of change suggests a possible role for norepinephrine in mediating endothelial cell t-PA release.


1986 ◽  
Vol 56 (02) ◽  
pp. 115-119 ◽  
Author(s):  
Eugene G Levin ◽  
David M Stern ◽  
Peter P Nawroth ◽  
Richard A Marlar ◽  
Daryl S Fair ◽  
...  

SummaryThe addition of thrombin (9 nM) to primary cultures of human endothelial cells induces a 6- to 7-fold increase in the rate of release of tissue plasminogen activator (tPA). Several other serine proteases which specifically interact with endothelial cells were also analyzed for their effect on tPA release. Gamma-thrombin, an autocatalytic product of α-thrombin, promoted tPA release but was less effective than α-thrombin. A maximum increase of 5.5-fold was observed, although a concentration of γ-thrombin 20 times greater than α-thrombin was required. The response to Factor Xa was similar to α-thrombin, although the stimulation was significantly reduced by the addition of hirudin or DAPA suggesting that prothrombin activation was occurring. The simultaneous addition of prothrombin with Factor Xa resulted in enhanced tPA release equal to that observed with an equimolar concentration of active α-thrombin. Thus, under these conditions, Factor Xa-cell surface mediated activation of prothrombin can lead to a secondary effect resulting from cell-thrombin interaction. Activated protein C, which has been implicated as a profibrinolytic agent, was also tested. No change in tPA release occurred after the addition of up to 325 nM activated protein C in the presence or absence of proteins. Factor IXa and plasmin were also ineffective. The effect of thrombin on the endothelial cell derived plasminogen activator specific inhibitor was also studied. Thrombin produced a small but variable release of the inhibitor with an increase of less than twice that of non-thrombin treated controls.


Sign in / Sign up

Export Citation Format

Share Document