scholarly journals Top-down modulation: bridging selective attention and working memory

2012 ◽  
Vol 16 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Adam Gazzaley ◽  
Anna C. Nobre
2010 ◽  
Vol 22 (6) ◽  
pp. 1224-1234 ◽  
Author(s):  
Aaron M. Rutman ◽  
Wesley C. Clapp ◽  
James Z. Chadick ◽  
Adam Gazzaley

Selective attention confers a behavioral benefit on both perceptual and working memory (WM) performance, often attributed to top–down modulation of sensory neural processing. However, the direct relationship between early activity modulation in sensory cortices during selective encoding and subsequent WM performance has not been established. To explore the influence of selective attention on WM recognition, we used electroencephalography to study the temporal dynamics of top–down modulation in a selective, delayed-recognition paradigm. Participants were presented with overlapped, “double-exposed” images of faces and natural scenes, and were instructed to either remember the face or the scene while simultaneously ignoring the other stimulus. Here, we present evidence that the degree to which participants modulate the early P100 (97–129 msec) event-related potential during selective stimulus encoding significantly correlates with their subsequent WM recognition. These results contribute to our evolving understanding of the mechanistic overlap between attention and memory.


2019 ◽  
Vol 116 (45) ◽  
pp. 22802-22810 ◽  
Author(s):  
Nahid Zokaei ◽  
Alexander G. Board ◽  
Sanjay G. Manohar ◽  
Anna C. Nobre

Studies of selective attention during perception have revealed modulation of the pupillary response according to the brightness of task-relevant (attended) vs. -irrelevant (unattended) stimuli within a visual display. As a strong test of top-down modulation of the pupil response by selective attention, we asked whether changes in pupil diameter follow internal shifts of attention to memoranda of visual stimuli of different brightness maintained in working memory, in the absence of any visual stimulation. Across 3 studies, we reveal dilation of the pupil when participants orient attention to the memorandum of a dark grating relative to that of a bright grating. The effect occurs even when the attention-orienting cue is independent of stimulus brightness, and even when stimulus brightness is merely incidental and not required for the working-memory task of judging stimulus orientation. Furthermore, relative dilation and constriction of the pupil occurred dynamically and followed the changing temporal expectation that 1 or the other stimulus would be probed across the retention delay. The results provide surprising and consistent evidence that pupil responses are under top-down control by cognitive factors, even when there is no direct adaptive gain for such modulation, since no visual stimuli were presented or anticipated. The results also strengthen the view of sensory recruitment during working memory, suggesting even activation of sensory receptors. The thought-provoking corollary to our findings is that the pupils provide a reliable measure of what is in the focus of mind, thus giving a different meaning to old proverbs about the eyes being a window to the mind.


2020 ◽  
Vol 63 (9) ◽  
pp. 3036-3050
Author(s):  
Elma Blom ◽  
Tessel Boerma

Purpose Many children with developmental language disorder (DLD) have weaknesses in executive functioning (EF), specifically in tasks testing interference control and working memory. It is unknown how EF develops in children with DLD, if EF abilities are related to DLD severity and persistence, and if EF weaknesses expand to selective attention. This study aimed to address these gaps. Method Data from 78 children with DLD and 39 typically developing (TD) children were collected at three times with 1-year intervals. At Time 1, the children were 5 or 6 years old. Flanker, Dot Matrix, and Sky Search tasks tested interference control, visuospatial working memory, and selective attention, respectively. DLD severity was based on children's language ability. DLD persistence was based on stability of the DLD diagnosis. Results Performance on all tasks improved in both groups. TD children outperformed children with DLD on interference control. No differences were found for visuospatial working memory and selective attention. An interference control gap between the DLD and TD groups emerged between Time 1 and Time 2. Severity and persistence of DLD were related to interference control and working memory; the impact on working memory was stronger. Selective attention was unrelated to DLD severity and persistence. Conclusions Age and DLD severity and persistence determine whether or not children with DLD show EF weaknesses. Interference control is most clearly impaired in children with DLD who are 6 years and older. Visuospatial working memory is impaired in children with severe and persistent DLD. Selective attention is spared.


Neuron ◽  
2021 ◽  
Author(s):  
Jochem van Kempen ◽  
Marc A. Gieselmann ◽  
Michael Boyd ◽  
Nicholas A. Steinmetz ◽  
Tirin Moore ◽  
...  
Keyword(s):  

2012 ◽  
Vol 36 (9) ◽  
pp. 2069-2084 ◽  
Author(s):  
Richard H.A.H. Jacobs ◽  
Remco Renken ◽  
Andre Aleman ◽  
Frans W. Cornelissen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document