Toxins in mussels (Mytilus galloprovincialis) associated with diarrhetic shellfish poisoning episodes in China

Toxicon ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 420-425 ◽  
Author(s):  
Aifeng Li ◽  
Jinggang Ma ◽  
Jijuan Cao ◽  
Pearse McCarron
2021 ◽  
Vol 9 (5) ◽  
pp. 451
Author(s):  
Nenad Vuletić ◽  
Jelena Lušić ◽  
Ivana Anđelić

Diarrhetic Shellfish Poisoning (DSP) toxicity was revealed in the Mediterranean blue mussel (Mytilus galloprovincialis) from the Bay of Mali Ston, in the south part of the Eastern Adriatic Sea, through the Croatian National Monitoring Programme in the period from January until June of 2011. A survey of DSP toxicity within the frame of regular controls carried out through the mouse bioassay (MBA, at the time the official method for DSP toxins) demonstrated that in some incidents, positive MBA, which manifested by the atypical symptomatology of the animals, dominated. Additional studies were done to explain the atypical results of the conducted biological tests at the time. In the current study, the bioaccumulated manganese concentration in the soft tissues of mussels was measured to investigate its influence on the MBA results. In both DSP negative and DSP positive samples, which were prepared for the analysis according to the modified US EPA 3052 method, the concentration of the bioaccumulated manganese was performed on the atomic absorption spectrometer using flame atomic absorption spectroscopy technique. The analysis revealed higher concentration of manganese in 87% of DSP positive samples and the expressed per wet weight ranged from 0.15 to 5.38 mg kg−1. The mean concentration of manganese for all DSP positive samples was 1.78 mg kg−1, while for DSP negative samples, it was 48% lower (0.93 mg kg−1). The highest concentration of manganese in DSP positive samples was measured in February 2011. Since the low concentrations of lipophilic biotoxins gymnodimines (GYMs) and spirolides (SPXs) were also detected in the analysed DSP positive samples in the parallel studies, the results obtained in this study suggest future investigations of the connection between the concentration of manganese and lipophilic biotoxins.


Molecules ◽  
2011 ◽  
Vol 16 (1) ◽  
pp. 888-899 ◽  
Author(s):  
Zivana Nincevic Gladan ◽  
Ivana Ujevic ◽  
Anna Milandri ◽  
Ivona Marasovic ◽  
Alfiero Ceredi ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 458
Author(s):  
Juan Blanco ◽  
Carmen Mariño ◽  
Helena Martín ◽  
Gonzalo Álvarez ◽  
Araceli E. Rossignoli

Cultures of the mussel Mytilus galloprovincialis are frequently affected by accumulation of the amnesic shellfish poisoning toxin domoic acid (DA). This species is characterized by a fast uptake and release of the toxin. In this work, the main characteristics of the uptake mechanism have been studied by incubation of digestive gland thin slices in media with different composition and DA concentration. DA uptake seems to follow Michaelis–Menten kinetics, with a very high estimated KM (1722 µg DA mL−1) and a Vmax of 71.9 µg DA g−1 h−1, which is similar to those found for other amino acids in invertebrates. Replacement of NaCl from the incubation media by Cl-choline (Na+-free medium) did not significantly reduce the uptake, but replacement by sorbitol (Na+-free and Cl−-depleted medium) did. A new experiment replacing all chlorides with their equivalent gluconates (Na+- and Cl−-free medium) showed an important reduction in the uptake that should be attributed to the absence of chloride, pointing to a Na+-independent, Cl− (or anion-) dependent transporter. In media with Na+ and Cl−, neither decreasing the pH nor adding cyanide (a metabolic inhibitor) had significant effect on DA uptake, suggesting that the transport mechanism is not H+- or ATP-dependent. In a chloride depleted medium, lowering pH or adding CN increased the uptake, suggesting that other anions could, at least partially, substitute chloride.


2016 ◽  
Vol 99 (5) ◽  
pp. 1163-1172 ◽  
Author(s):  
Pearse McCarron ◽  
Kelley L Reeves ◽  
Sabrina D Giddings ◽  
Daniel G Beach ◽  
Michael A Quilliam

Abstract Okadaic acid (OA) and its analogs, dinophysistoxins-1 (DTX1) and -2 (DTX2) are lipophilic biotoxins produced by marine algae that can accumulate in shellfish and cause the human illness known as diarrhetic shellfish poisoning (DSP). Regulatory testing of shellfish is required to protect consumers and the seafood industry. Certified reference materials (CRMs) are essential for the development, validation, and quality control of analytical methods, and thus play an important role in toxin monitoring. This paper summarizes work on research and development of shellfish tissue reference materials for OA and DTXs. Preliminary work established the appropriate conditions for production of shellfish tissue CRMs for OA and DTXs. Source materials, including naturally incurred shellfish tissue and cultured algae, were screened for their DSP toxins. This preliminary work informed planning and production of a wet mussel (Mytilus edulis) tissue homogenate matrix CRM. The homogeneity and stability of the CRM were evaluated and found to be fit-for-purpose. Extraction and LC-tandem MS methods were developed to accurately certify the concentrations of OA, DTX1, and DTX2 using a combination of standard addition and matrix-matched calibration to compensate for matrix effects in electrospray ionization. The concentration of domoic acid was also certified. Uncertainties were assigned following standards and guidelines from the International Organization for Standardization. The presence of other toxins in the CRM was also assessed and information values are reported for OA and DTX acyl esters.


Harmful Algae ◽  
2006 ◽  
Vol 5 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Thomas L. Madigan ◽  
Ken G. Lee ◽  
David J. Padula ◽  
Paul McNabb ◽  
Andrew M. Pointon

Sign in / Sign up

Export Citation Format

Share Document