matrix effects
Recently Published Documents


TOTAL DOCUMENTS

1820
(FIVE YEARS 425)

H-INDEX

74
(FIVE YEARS 9)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Noelia Pallarés ◽  
Albert Sebastià ◽  
Vicente Martínez-Lucas ◽  
Rui Queirós ◽  
Francisco J. Barba ◽  
...  

The aim of the present study was to investigate the potential of high-pressure processing (HPP) (600 MPa during 5 min) on emerging mycotoxins, enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1) reduction in different juice/milk models, and to compare it with the effect of a traditional thermal treatment (HT) (90 °C during 21 s). For this purpose, different juice models (orange juice, orange juice/milk beverage, strawberry juice, strawberry juice/milk beverage, grape juice and grape juice/milk beverage) were prepared and spiked individually with ENNA, ENNA1, ENNB and ENNB1 at a concentration of 100 µg/L. After HPP and HT treatments, ENNs were extracted from treated samples and controls employing dispersive liquid-liquid microextraction methodology (DLLME) and determined by liquid chromatography coupled to ion-trap tandem mass spectrometry (HPLC-MS/MS-IT). The results obtained revealed higher reduction percentages (11% to 75.4%) when the samples were treated under HPP technology. Thermal treatment allowed reduction percentages varying from 2.6% to 24.3%, at best, being ENNA1 the only enniatin that was reduced in all juice models. In general, no significant differences (p > 0.05) were observed when the reductions obtained for each enniatin were evaluated according to the kind of juice model, so no matrix effects were observed for most cases. HPP technology can constitute an effective tool in mycotoxins removal from juices.


2022 ◽  
Vol 10 (1) ◽  
pp. 93
Author(s):  
Yuhua Gao ◽  
Xiaoyuan Wang ◽  
Xianwen Fang ◽  
Xuebo Yin ◽  
Lu Chen ◽  
...  

Fluorine and chlorine are important tracers for geochemical and environmental studies. In this study, a rapid alkaline digestion (NaOH) method for the simultaneous determination of fluorine and chlorine in marine and stream sediment reference samples using ion chromatography is developed. The proposed method suppresses the volatilization loss of fluorine and chlorine and decreases the matrix effects. The results are in good agreement with fluorine ~100%, chlorine ranging from 90 to 95% of the expected concentrations. The detection limits of this method were 0.05 μg/g for fluorine and 0.10 μg/g for chlorine. This method is simple, economical, precise and accurate, which shows great potential for the rapid simultaneous determination of fluorine and chlorine in large batches of geological and environmental samples commonly analyzed for environmental geochemistry studies.


Author(s):  
Mengxia Wang ◽  
Qi Han ◽  
Yufei Shu ◽  
Kunkun Wang ◽  
Li Wang ◽  
...  

Mercury (Hg) contamination in groundwater has been recognized as a serious threat to human health and ecological system all over the world. This study demonstrated two-dimensional (2D) molybdenum disulfide (MoS2)...


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Jensen Cherewyk ◽  
Taylor Grusie-Ogilvie ◽  
Barry Blakley ◽  
Ahmad Al-Dissi

Ergot sclerotia effect cereal crops intended for consumption. Ergot alkaloids within ergot sclerotia are assessed to ensure contamination is below safety standards established for human and animal health. Ergot alkaloids exist in two configurations, the R and S-epimers. It is important to quantify both configurations. The objective of this study was to validate a new ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for quantification of six R and six S-epimers of ergot alkaloids in hard red spring wheat utilizing deuterated lysergic acid diethylamide (LSD-D3) as an internal standard. Validation parameters such as linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effects, recovery and precision were investigated. For the 12 epimers analyzed, low LOD and LOQ values were observed, allowing for the sensitive detection of ergot epimers. Matrix effects ranged between 101–113% in a representative wheat matrix. Recovery was 68.3–119.1% with an inter-day precision of <24% relative standard deviation (RSD). The validation parameters conform with previous studies and exhibit differences between the R and S-epimers which has been rarely documented. This new sensitive method allows for the use of a new internal standard and can be incorporated and applied to research or diagnostic laboratories.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 180
Author(s):  
Blerina Shkembi ◽  
Thom Huppertz

This article reviews physicochemical aspects of calcium absorption from foods. Notable differences are observed between different food products in relation to calcium absorption, which range from <10% to >50% of calcium in the foods. These differences can be related to the interactions of calcium with other food components in the food matrix, which are affected by various factors, including fermentation, and how these are affected by the conditions encountered in the gastrointestinal tract. Calcium absorption in the intestine requires calcium to be in an ionized form. The low pH in the stomach is critical for solubilization and ionization of calcium salts present in foods, although calcium oxalate complexes remain insoluble and thus poorly absorbable. In addition, the rate of gastric transit can strongly affect fractional absorption of calcium and a phased release of calcium into the intestine, resulting in higher absorption levels. Dairy products are the main natural sources of dietary calcium in many diets worldwide, which is attributable to their ability to provide high levels of absorbable calcium in a single serving. For calcium from other food products, lower levels of absorbable calcium can limit contributions to bodily calcium requirements.


Abstract Bicalutamide (BCL) has been approved for treatment of advanced prostate cancer (Pca), and vitamin D is inevitably used in combination with BCL in Pca patients for skeletal or anti-tumor strategies. Therefore, it is necessary to study the effect of vitamin D application on the pharmacokinetics of BCL. We developed and validated a specific, sensitive and rapid UHPLC–MS/MS method to investigate the pharmacokinetic behaviours of BCL in rat plasma with and without the combined use of vitamin D. Plasma samples were extracted by protein precipitation with ether/dichloromethane (2:1 v/v), and the analytes were separated by a Kinetex Biphenyl 100A column (2.1 × 100 mm, 2.6 μm) with a mobile phase composed of 0.5 mM ammonium acetate (PH 6.5) in water (A) and acetonitrile (B) in a ratio of A:B = 35:65 (v/v). Analysis of the ions was run in the multiple reactions monitoring (MRM) mode. The linear range of BCL was 5–2000 ng mL−1. The intra- and inter-day precision were less than 14%, and the accuracy was in the range of 94.4–107.1%. The mean extraction recoveries, matrix effects and stabilities were acceptable for this method. The validated method was successfully applied to evaluate the pharmacokinetic behaviours of BCL in rat plasma. The results demonstrated that the pharmacokinetic property of BCL is significantly affected by combined use of vitamin D, which might help provide useful evidence for the clinical therapy and further pharmacokinetic study.


Sign in / Sign up

Export Citation Format

Share Document