uptake mechanism
Recently Published Documents


TOTAL DOCUMENTS

552
(FIVE YEARS 102)

H-INDEX

56
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Jessica El Khoury ◽  
Jordi Zamarreno ◽  
Allison Huguenot ◽  
Béatrice Py ◽  
Frédéric Barras

Aminoglycosides have been used against Gram-negative bacteria for decades. Yet, uncertainties remain about various aspects of their uptake mechanism. Moreover their killing efficiency is well known to vary as a function of growth conditions and types of metabolism used by the targeted bacterium. Here we show that RavA, an AAA+ ATPase from the MoxR subfamily, associated with its VWA-containing partner, ViaA sensitize E. coli to lethal concentrations of AG, including gentamycin (Gm) and tobramycin, but not of antibiotics of other classes. We show this sensitizing effect to be due to enhanced Gm uptake in a proton motive force dependent manner. We evaluated the influence of RavA ViaA throughout a series of growth conditions, including aerobiosis and anaerobiosis. This led us to observe that the sensitizing effect of RavA ViaA varies with the respiratory chain used, i.e. RavA ViaA influence was prominent in the absence of exogenous electron acceptor or with fumarate, i.e. in poor energy conservation conditions, and dispensable in the presence of nitrate or oxygen, i.e. in high level of energy conservation. We propose RavA ViaA to be able to sense energetic state of the cell and to be used under low energy conditions for facilitating uptake of chemicals across the membrane, including Gm.


2021 ◽  
Vol 11 ◽  
Author(s):  
Weinan Li ◽  
Xiaoyu Zhang ◽  
Yang Nan ◽  
Li Jia ◽  
Jialin Sun ◽  
...  

pH-responsive and CD44 receptor-mediated targeted nanoparticles for eliminating cancer stem cells (CSCs) were developed based on complexes of PEG-poly(β-amino ester) (PEG-PBAE) micelles (PPM) coated with hyaluronic acid (HA) (HA-coated PPM complex, or HPPMc). Thioridazine (Thz) was loaded into HPPMc with a decent drug loading content. The release results of the drug in vitro showed that Thz was released from the HPPMc, which was stimulated by both the acidic pH and specific enzymes. Cytotoxicity studies on mammospheres (MS) revealed that the toxicity potential of Thz-loaded HPPMc (Thz–HPPMc) at pH 5.5 was better than drug solutions. Compared with that at pH 7.4, a higher cellular uptake of a coumarin-6 (C6)-labeled complex at pH 5.5 was observed, which demonstrated that complexes were efficiently taken up in MS. Meanwhile, free HA competitively inhibited the cellular uptake of HPPMc, which revealed that the uptake mechanism was CD44 receptor-mediated endocytosis. Within the acidic endolysosomal environment, the protonation of PBAE facilitated the escape of the complex from the lysosome and releases the drug. The results of in vivo distribution studies and tumor suppression experiments showed that HPMMc could stay in the tumor site of BALB/c nude mice for a longer period of time, and Thz–HPPMc could significantly improve the tumor-suppressing effect. All these results demonstrated the great potential of the multifunctional nanoparticle system for eliminating CSCs.


2021 ◽  
Author(s):  
Vinaykumar Rachappanavar ◽  
Arushi Padiyal ◽  
Jitender Kumar Sharma ◽  
Satish Kumar Gupta ◽  
Narender Negi

Abstract Silicon (Si) is the most abundant element after oxygen on the earth crust surface. It plays essential role in crop production by stimulating the growth and development. Very substantial efforts have been performed to better explore Si derived benefits for horticulture crops. In the present review, molecular and physiological mechanisms explaining the observed beneficial effects plant derive from the Si supplementations, more particularly in horticultural species have been discussed. In general, horticulture crops need extensive management and higher crop protection measures compared to agronomical crops. Therefore, integrated approaches including Si supplementations will help to improve plant resilience under biotic and abiotic stresses. Application of Si to plants promotes cell walls strength and provides additional support through increased mechanical and biochemical support. Horticultural crop production is frequently subjected to the naturally occurring different biotic and abiotic stresses that can substantially reduce the absorption and translation of essential elements and ultimately decrease the crop yield. Fruit and vegetable production in Drought, salinity, high and low temperature, toxic metals and pest infection prone areas is the key to meet the world minimum nutrients demand. Here, molecular mechanism involved in the Si uptake by root and subsequent transport to areal tissues is also illustrated. However, Si uptake mechanism at molecular level poorly studied in horticulture crops. Here we described the role of Si and its transporters in mitigating abiotic stress condition in horticultural plants.


2021 ◽  
Vol 21 (23) ◽  
pp. 17687-17714
Author(s):  
Mária Lbadaoui-Darvas ◽  
Satoshi Takahama ◽  
Athanasios Nenes

Abstract. Liquid–liquid phase-separated (LLPS) aerosol particles are known to exhibit increased cloud condensation nuclei (CCN) activity compared to well-mixed ones due to a complex effect of low surface tension and non-ideal mixing. The relation between the two contributions as well as the molecular-scale mechanism of water uptake in the presence of an internal interface within the particle is to date not fully understood. Here we attempt to gain understanding in these aspects through steered molecular dynamics simulation studies of water uptake by a vapor–hydroxy-cis-pinonic acid–water double interfacial system at 200 and 300 K. Simulated free-energy profiles are used to map the water uptake mechanism and are separated into energetic and entropic contributions to highlight its main thermodynamic driving forces. Atmospheric implications are discussed in terms of gas–particle partitioning, intraparticle water redistribution timescales and water vapor equilibrium saturation ratios. Our simulations reveal a strongly temperature-dependent water uptake mechanism, whose most prominent features are determined by local extrema in conformational and orientational entropies near the organic–water interface. This results in a low core uptake coefficient (ko/w=0.03) and a concentration gradient of water in the organic shell at the higher temperature, while entropic effects are negligible at 200 K due to the association-entropic-term reduction in the free-energy profiles. The concentration gradient, which results from non-ideal mixing – and is a major factor in increasing LLPS CCN activity – is responsible for maintaining liquid–liquid phase separation and low surface tension even at very high relative humidities, thus reducing critical supersaturations. Thermodynamic driving forces are rationalized to be generalizable across different compositions. The conditions under which single uptake coefficients can be used to describe growth kinetics as a function of temperature in LLPS particles are described.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009743
Author(s):  
Dana Bohan ◽  
Hanora Van Ert ◽  
Natalie Ruggio ◽  
Kai J. Rogers ◽  
Mohammad Badreddine ◽  
...  

Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2.


2021 ◽  
Author(s):  
Tanmay Abhay Kulkarni ◽  
Debabrata Mukhopadhyay ◽  
Santanu Bhattacharya

Abstract BackgroundEfficacy of targeted drug delivery using nanoparticles relies on several factors including the uptake mechanisms such as phagocytosis, macropinocytosis, micropinocytosis and receptor mediated endocytosis. These mechanisms have been studied with respect to the alteration in signaling mechanisms, cellular morphology, and linear nanomechanical properties (NMPs). Commonly employed classical contact mechanics models to address cellular NMPs fail to address mesh like structure consisting of bilayer lipids and proteins of cell membrane. To overcome this technical challenge, we employed poroelastic model which accounts for the biphasic nature of cells including their porous behavior exhibiting both solid like (fluid storage) and liquid like (fluid dissipate) behavior ResultsIn this study, we employed atomic force microscopy to monitor the influence of surface engineering of gold nanoparticles (GNPs) to the alteration of nonlinear NMPs such as drained Poisson’s ratio, effective shear stress, diffusion constant and pore dimensions of cell membranes during their uptake. Herein, we used pancreatic cancer (PDAC) cell lines including Panc1, AsPC-1 and endothelial cell HUVECs to understand the receptor-dependent and -independent endocytosis of two different GNPs derived using plectin-1 targeting peptide (PTP-GNP) and corresponding scrambled peptide (sPEP-GNP). Compared to untreated cells, in case of receptor dependent endocytosis of PTP-GNPs diffusion coefficient altered ~1264-fold and ~1530-fold and pore size altered ~320-fold and ~260-fold in Panc1 and AsPC-1 cells respectively. Whereas for receptor independent mechanisms, we observed modest alteration in diffusion coefficient and pore size, in these cells compared to untreated cells. Effective shear stress corresponding to 7.38±0.15 kPa and 20.49±0.39 kPa in PTP-GNP treatment in Panc1 and AsPC-1, respectively was significantly more than that for sPEP-GNP. These results demonstrate that with temporal recruitment of plectin-1 during receptor mediated endocytosis affects the poroelastic attributes of the membrane. ConclusionThis study confirms that nonlinear NMPs of cell membrane are directly associated with the uptake mechanism of nanoparticles and can provide promising insights of the nature of endocytosis mechanism involved for organ specific drug delivery using nanoparticles. Hence, nanomechanical analysis of cell membrane es using this noninvasive, label-free and live-cell analytical tool can therefore be instrumental to evaluate therapeutic benefit of nanoformulations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yasunori Saitoh ◽  
Namiki Mitani-Ueno ◽  
Keisuke Saito ◽  
Kengo Matsuki ◽  
Sheng Huang ◽  
...  

AbstractSilicon (Si), the most abundant mineral element in the earth’s crust, is taken up by plant roots in the form of silicic acid through Low silicon rice 1 (Lsi1). Lsi1 belongs to the Nodulin 26-like intrinsic protein subfamily in aquaporin and shows high selectivity for silicic acid. To uncover the structural basis for this high selectivity, here we show the crystal structure of the rice Lsi1 at a resolution of 1.8 Å. The structure reveals transmembrane helical orientations different from other aquaporins, characterized by a unique, widely opened, and hydrophilic selectivity filter (SF) composed of five residues. Our structural, functional, and theoretical investigations provide a solid structural basis for the Si uptake mechanism in plants, which will contribute to secure and sustainable rice production by manipulating Lsi1 selectivity for different metalloids.


2021 ◽  
Author(s):  
Rinie Bajracharya ◽  
Esteban Cruz ◽  
Juergen Goetz ◽  
Rebecca M Nisbet

Tau-specific immunotherapy is an attractive therapeutic strategy for the treatment of Alzheimer's disease and other tauopathies. However, targeting tau effectively remains a considerable challenge due to the restrictive nature of the blood-brain barrier (BBB), which excludes 99.9% of peripherally administered antibodies. We have previously shown that the delivery of tau-specific monoclonal antibody (mAb) with low-intensity scanning ultrasound in combination with intravenously injected microbubbles (SUS+MB) increases the passage of IgG antibodies into the brain. SUS+MB transiently opens tight junctions to allow paracellular transport, but also facilitates transcellular transport, particularly for larger cargoes. However, therapeutic efficacy after enhanced brain delivery has not been explored. To assess whether ultrasound-mediated delivery of tau-specific mAbs leads to an enhanced therapeutic response, K369I tau transgenic K3 mice were passively immunised once weekly for 12 weeks with a novel mAb, RNF5, in combination with SUS+MB. While none of the treatment arms improved behaviour or motor functions in these mice, we found that both RNF5 and SUS+MB treatments on their own reduced tau pathology, but, surprisingly, the combination of both (RNF5+SUS+MB) did not achieve an additive reduction in tau pathology. This was despite observing increased antibody penetration in the brain. Interestingly, a significant fraction of the antibody in the combination treatment was visualized in brain endothelial cells, suggesting that paracellular transport may not be the preferred uptake mechanism for RNF5. Taken altogether, more research is warranted to develop SUS+MB as a delivery modality for anti-tau antibodies.


Author(s):  
Ning Ma ◽  
Changfeng Wu ◽  
Zihui Meng

Exosomes are lipid bilayer vesicles released by cells and serve as natural carriers for cell–cell communication. Exosomes provide a promising approach to the diagnosis and treatment of diseases and are considered as an alternative to cell therapy. However, one main restriction in their clinical application is that the current understanding of these vesicles, especially their in vivo behaviors and distributions, remains inadequate. Here, we reviewed the current and emerging methods for in vivo imaging and tracking of exosomes, including fluorescence imaging, bioluminescence imaging, nuclear imaging, X-ray imaging, magnetic resonance imaging, photoacoustic imaging, and multimodal imaging. In vivo imaging and tracking of exosomes by these methods can help researchers further understand their uptake mechanism, biodistribution, migration, function, and therapeutic performance. The pioneering studies in this field can elucidate many unknown exosomal behaviors at different levels. We discussed the advantages and limitations of each labeling and imaging strategy. The advances in labeling and in vivo imaging will expand our understanding of exosomes and promote their clinical application. We finally provide a perspective and discuss several important issues that need to be explored in future research. This review highlights the values of efficient, sensitive, and biocompatible exosome labeling and imaging techniques in disease theranostics.


Sign in / Sign up

Export Citation Format

Share Document