Identification of key amino acid residues for α-conotoxin regiia blocking of α7 nicotinic acetylcholine receptors

Toxicon ◽  
2019 ◽  
Vol 158 ◽  
pp. S43
Author(s):  
Jinpeng Yu ◽  
Xiaopeng Zhu ◽  
Yumiao Lei ◽  
Dongting Zhangsun ◽  
Sulan Luo
2013 ◽  
Vol 288 (48) ◽  
pp. 34428-34442 ◽  
Author(s):  
Anton A. Grishin ◽  
Hartmut Cuny ◽  
Andrew Hung ◽  
Richard J. Clark ◽  
Andreas Brust ◽  
...  

Author(s):  
Kuntarat Arunrungvichian ◽  
Jiradanai Sarasamkan ◽  
Gerrit Schüürmann ◽  
Peter Brust ◽  
Opa Vajragupta

An investigation on the selective binding of six quinuclidine-triazole enantiomeric pairs to nicotinic acetylcholine receptor (nAChR) subtypes, (S)-enantiomers for a3b4-nAChR and its (R)-counterpart for a7-nAChR, was performed in silico to provide the insight into the molecular basis for subtype discrimination of the quinuclidine-triazole enantiomers. The homology modeling and molecular docking analyses revealed that unique amino acid residues in the complementary subunit of nAChR subtypes are related to a high subtype selectivity profile. One non-conserved residue AspB173 in a complementary b4-subunit of the a3b4-nAChR binding pocket was found to be a primary determinant for the a3b4 selectivity of the quinuclidine-triazole chemotype as evidenced by the more pronounced enantioselectivity of (S)-enantiomers for the a3b4 nAChR, 47-326 times greater than its corresponding (R)-enantiomers. For (R)-enantiomers toward the a7 subtype, the interacting amino acid residues were the conserved TyrA93 and TrpA149 and TrpB55, leading to a lesser degree of stereoselectivity. The interaction with non-conserved amino acid residues in the complementary subunit of nAChR subtypes appeared to be the determinant for the nAChR subtype-selective binding, particularly at the heteropentameric subtype.


Parasitology ◽  
2007 ◽  
Vol 134 (6) ◽  
pp. 833-840 ◽  
Author(s):  
G. N. BENTLEY ◽  
A. K. JONES ◽  
A. AGNEW

SUMMARYNicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate the fast actions of the neurotransmitter, acetylcholine. Invertebrate nAChRs are of interest as they are targets of widely-selling insecticides and drugs that control nematode parasites. Here, we report the cloning of ShAR2β, a candidate nAChR subunit from the blood fluke, Schistosoma haematobium, which is the third trematode nAChR subunit to be characterized. While ShAR2β possesses key structural features common to all nAChRs, its amino acid sequence shares considerably low identity with those of insect, nematode and vertebrate nAChR subunits. In particular, the second transmembrane domain of ShAR2β, which lines the ion channel, bears unusual amino acid residues which will likely give rise to a receptor with distinct functional properties. Phylogenetic analysis shows that ShAR2β is a divergent nAChR subunit that may define a clade of trematode-specific subunits. We discuss our findings in the context of potentially exploiting this receptor as a target for controlling schistosome parasites.


Sign in / Sign up

Export Citation Format

Share Document