transmembrane domain
Recently Published Documents


TOTAL DOCUMENTS

3509
(FIVE YEARS 685)

H-INDEX

123
(FIVE YEARS 13)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 283
Author(s):  
Eric J. Mallack ◽  
Kerry Gao ◽  
Marc Engelen ◽  
Stephan Kemp

The progressive neurometabolic disorder X-linked adrenoleukodystrophy (ALD) is caused by pathogenic variants in the ABCD1 gene, which encodes the peroxisomal ATP-binding transporter for very-long-chain fatty acids. The clinical spectrum of ALD includes adrenal insufficiency, myelopathy, and/or leukodystrophy. A complicating factor in disease management is the absence of a genotype–phenotype correlation in ALD. Since 1999, most ABCD1 (likely) pathogenic and benign variants have been reported in the ABCD1 Variant Database. In 2017, following the expansion of ALD newborn screening, the database was rebuilt. To add an additional level of confidence with respect to pathogenicity, for each variant, it now also reports the number of cases identified and, where available, experimental data supporting the pathogenicity of the variant. The website also provides information on a number of ALD-related topics in several languages. Here, we provide an updated analysis of the known variants in ABCD1. The order of pathogenic variant frequency, overall clustering of disease-causing variants in exons 1–2 (transmembrane domain spanning region) and 6–9 (ATP-binding domain), and the most commonly reported pathogenic variant p.Gln472Argfs*83 in exon 5 are consistent with the initial reports of the mutation database. Novel insights include nonrandom clustering of high-density missense variant hotspots within exons 1, 2, 6, 8, and 9. Perhaps more importantly, we illustrate the importance of collaboration and utility of the database as a scientific, clinical, and ALD-community-wide resource.


2022 ◽  
Author(s):  
Bing Zhang ◽  
Zihe Rao ◽  
Haitao Yang ◽  
Shan Sun ◽  
Yan Gao ◽  
...  

The ATP-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the typical fold of canonical ABC exporters. Here, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, and an ATP analogue (AMP-PNP) at resolutions from 2.9 to 3.5 Å. In the ATP-bound state, the two nucleotide-binding domains (NBDs) form a "head-to-tail" dimer, but IrtAB has an unexpectedly occluded conformation, with the inner core forming a large hydrophilic cavity of about 4600 Å3. Comparison of the structure of the transporter in inward-facing and occluded conformations reveals that the NBD and the intracellular helical region of transmembrane domain (TMD) have an asymmetric allosteric mechanism when ATP binding/hydrolysis such that the one exhibits rigid-body rotation and the other moves in a concerted response as a rigid body. This study provides a molecular basis for the ATP-driven conformational changes that occur in IrtAB and an explanation as to how iron-loaded siderophores are imported into Mtb by IrtAB.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Le Thi My Le ◽  
James Robert Thompson ◽  
Phuoc Xuan Dang ◽  
Janarjan Bhandari ◽  
Amer Alam

AbstractThe peroxisomal very long chain fatty acid (VLCFA) transporter ABCD1 is central to fatty acid catabolism and lipid biosynthesis. Its dysfunction underlies toxic cytosolic accumulation of VLCFAs, progressive demyelination, and neurological impairments including X-linked adrenoleukodystrophy (X-ALD). We present cryo-EM structures of ABCD1 in phospholipid nanodiscs in a nucleotide bound conformation open to the peroxisomal lumen and an inward facing conformation open to the cytosol at up to 3.5 Å resolution, revealing details of its transmembrane cavity and ATP dependent conformational spectrum. We identify features distinguishing ABCD1 from its closest homologs and show that coenzyme A (CoA) esters of VLCFAs modulate ABCD1 activity in a species dependent manner. Our data suggest a transport mechanism where the CoA moieties of VLCFA-CoAs enter the hydrophilic transmembrane domain while the acyl chains extend out into the surrounding membrane bilayer. The structures help rationalize disease causing mutations and may aid ABCD1 targeted structure-based drug design.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Giuseppe Deganutti ◽  
Yi-Lynn Liang ◽  
Xin Zhang ◽  
Maryam Khoshouei ◽  
Lachlan Clydesdale ◽  
...  

AbstractThe glucagon-like peptide-1 receptor (GLP-1R) has broad physiological roles and is a validated target for treatment of metabolic disorders. Despite recent advances in GLP-1R structure elucidation, detailed mechanistic understanding of how different peptides generate profound differences in G protein-mediated signalling is still lacking. Here we combine cryo-electron microscopy, molecular dynamics simulations, receptor mutagenesis and pharmacological assays, to interrogate the mechanism and consequences of GLP-1R binding to four peptide agonists; glucagon-like peptide-1, oxyntomodulin, exendin-4 and exendin-P5. These data reveal that distinctions in peptide N-terminal interactions and dynamics with the GLP-1R transmembrane domain are reciprocally associated with differences in the allosteric coupling to G proteins. In particular, transient interactions with residues at the base of the binding cavity correlate with enhanced kinetics for G protein activation, providing a rationale for differences in G protein-mediated signalling efficacy from distinct agonists.


2022 ◽  
Author(s):  
Lukas P Feilen ◽  
Shu-Yu Chen ◽  
Akio Fukumori ◽  
Regina Feederle ◽  
Martin Zacharias ◽  
...  

Cleavage of membrane proteins in the lipid bilayer by intramembrane proteases is crucial for health and disease. Although different lipid environments can potently modulate their activity, how this is linked to their structural dynamics is unclear. Here we show that the carboxy-peptidase-like activity of the archaeal intramembrane protease PSH, a homolog of the Alzheimer's disease-associated presenilin/γ-secretase is impaired in micelles and promoted in a lipid bilayer. Comparative molecular dynamics simulations revealed that important elements for substrate binding such as transmembrane domain 6a of PSH are more labile in micelles and stabilized in the lipid bilayer. Moreover, consistent with an enhanced interaction of PSH with a transition-state analog inhibitor, the bilayer promoted the formation of the enzyme's catalytic active site geometry. Our data indicate that the lipid environment of an intramembrane protease plays a critical role in structural stabilization and active site arrangement of the enzyme-substrate complex thereby promoting intramembrane proteolysis.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Coline Plé ◽  
Heng-Keat Tam ◽  
Anais Vieira Da Cruz ◽  
Nina Compagne ◽  
Juan-Carlos Jiménez-Castellanos ◽  
...  

AbstractEfflux transporters of the RND family confer resistance to multiple antibiotics in Gram-negative bacteria. Here, we identify and chemically optimize pyridylpiperazine-based compounds that potentiate antibiotic activity in E. coli through inhibition of its primary RND transporter, AcrAB-TolC. Characterisation of resistant E. coli mutants and structural biology analyses indicate that the compounds bind to a unique site on the transmembrane domain of the AcrB L protomer, lined by key catalytic residues involved in proton relay. Molecular dynamics simulations suggest that the inhibitors access this binding pocket from the cytoplasm via a channel exclusively present in the AcrB L protomer. Thus, our work unveils a class of allosteric efflux-pump inhibitors that likely act by preventing the functional catalytic cycle of the RND pump.


2022 ◽  
Author(s):  
Bryan Faust ◽  
Isha Singh ◽  
Kaihua Zhang ◽  
Nicholas Hoppe ◽  
Antonio F.M. Pinto ◽  
...  

Thyroid hormones are vital to growth and metabolism. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR). Autoantibodies that activate the TSHR pathologically increase thyroid hormones in Graves' disease. How autoantibodies mimic TSH function remains unclear. We determined cryogenic-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. TSH selects an upright conformation of the extracellular domain due to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody selects a similar upright conformation of the extracellular domain. Conformational changes in the extracellular domain are transduced to the seven transmembrane domain via a conserved hinge domain, a tethered peptide agonist, and a phospholipid that binds within the seven transmembrane domain. Rotation of the TSHR ECD relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to G protein-coupled receptors with large extracellular domains.


Autophagy ◽  
2022 ◽  
pp. 1-20
Author(s):  
Xuan Qin ◽  
Rui Wang ◽  
Hongkun Xu ◽  
Licheng Tu ◽  
Hailing Chen ◽  
...  
Keyword(s):  

Author(s):  
Victor Hugo Pérez Carrillo ◽  
Dania Rose-Sperling ◽  
Mai Anh Tran ◽  
Christoph Wiedemann ◽  
Ute A. Hellmich

AbstractATP binding cassette (ABC) proteins are present in all phyla of life and form one of the largest protein families. The Bacillus subtilis ABC transporter BmrA is a functional homodimer that can extrude many different harmful compounds out of the cell. Each BmrA monomer is composed of a transmembrane domain (TMD) and a nucleotide binding domain (NBD). While the TMDs of ABC transporters are sequentially diverse, the highly conserved NBDs harbor distinctive conserved motifs that enable nucleotide binding and hydrolysis, interdomain communication and that mark a protein as a member of the ABC superfamily. In the catalytic cycle of an ABC transporter, the NBDs function as the molecular motor that fuels substrate translocation across the membrane via the TMDs and are thus pivotal for the entire transport process. For a better understanding of the structural and dynamic consequences of nucleotide interactions within the NBD at atomic resolution, we determined the 1H, 13C and 15N backbone chemical shift assignments of the 259 amino acid wildtype BmrA-NBD in its post-hydrolytic, ADP-bound state.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Noah M Dietzen ◽  
Mark J Arcario ◽  
Lawrence J Chen ◽  
John T Petroff ◽  
Trent K Moreland ◽  
...  

Polyunsaturated fatty acids (PUFAs) inhibit pentameric ligand-gated ion channels (pLGICs) but the mechanism of inhibition is not well understood. The PUFA, docosahexaenoic acid (DHA), inhibits agonist responses of the pLGIC, ELIC, more effectively than palmitic acid, similar to the effects observed in the GABAA receptor and nicotinic acetylcholine receptor. Using photo-affinity labeling and coarse-grained molecular dynamics simulations, we identified two fatty acid binding sites in the outer transmembrane domain (TMD) of ELIC. Fatty acid binding to the photolabeled sites is selective for DHA over palmitic acid, and specific for an agonist-bound state. Hexadecyl-methanethiosulfonate modification of one of the two fatty acid binding sites in the outer TMD recapitulates the inhibitory effect of PUFAs in ELIC. The results demonstrate that DHA selectively binds to multiple sites in the outer TMD of ELIC, but that state-dependent binding to a single intrasubunit site mediates DHA inhibition of ELIC.


Sign in / Sign up

Export Citation Format

Share Document