Exact dynamic/static stiffness matrices of non-symmetric thin-walled beams considering coupled shear deformation effects

2005 ◽  
Vol 43 (5) ◽  
pp. 701-734 ◽  
Author(s):  
Nam-Il Kim ◽  
Moon-Young Kim
2004 ◽  
Vol 42 (9) ◽  
pp. 1231-1256 ◽  
Author(s):  
Nam-Il Kim ◽  
Byoung-Ju Lee ◽  
Moon-Young Kim

2021 ◽  
Vol 233 ◽  
pp. 111867
Author(s):  
Xiayuan Li ◽  
Shui Wan ◽  
Yuanhai Zhang ◽  
Maoding Zhou ◽  
Yilung Mo

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 678-690
Author(s):  
Shenggang Chen ◽  
Chaolai Li ◽  
Quanquan Guo ◽  
Shaohong Cheng ◽  
Bo Diao

1983 ◽  
Vol 27 (04) ◽  
pp. 281-285
Author(s):  
K. Rajagopalan ◽  
C. Ganapathy Chettiar

A finite-element procedure for the determination of buckling pressure of thin-walled cylindrical shells used in ocean structures is presented. The derivation of the elastic and geometric stiffness matrices is discussed in detail followed by a succinct description of the computer program developed by the authors during the course of this study for the determination of the buckling pressure. Particular attention is paid to the boundary conditions which strongly influence the buckling pressure. Applications involving the interstiffener buckling in submersible hulls and cylindrical shells with stepwise variation in wall thickness are considered and the results compared with the solutions and procedures available in the literature.


1983 ◽  
Vol 105 (4) ◽  
pp. 476-483
Author(s):  
A. Potiron ◽  
D. Gay

We start from the energetical expressions of dynamical torsion of beams in terms of angular and warping displacement and velocity. We derive the stiffness and two mass matrices including both secondary effects for torsion: the shear deformation due to nonuniform warping and the warping inertia. The suitability of these matrices for evaluation modified torsional frequencies is investigated in the case of thick, as well as thin-walled, cross section beams by comparison with analytical and experimental results.


Sign in / Sign up

Export Citation Format

Share Document