Dynamic instability behavior of laminated hypar and conoid shells using a higher-order shear deformation theory

2011 ◽  
Vol 49 (1) ◽  
pp. 77-84 ◽  
Author(s):  
S. Pradyumna ◽  
J.N. Bandyopadhyay
Author(s):  
M. Amabili ◽  
J. N. Reddy

A consistent higher-order shear deformation nonlinear theory is developed for shells of generic shape; taking geometric imperfections into account. The geometrically nonlinear strain-displacement relationships are derived retaining full nonlinear terms in the in-plane displacements; they are presented in curvilinear coordinates in a formulation ready to be implemented. Then, large-amplitude forced vibrations of a simply supported, laminated circular cylindrical shell are studied (i) by using the developed theory, and (ii) keeping only nonlinear terms of the von Ka´rma´n type. Results show that inaccurate results are obtained by keeping only nonlinear terms of the von Ka´rma´n type for vibration amplitudes of about two times the shell thickness for the studied case.


2019 ◽  
Vol 57 ◽  
pp. 175-191 ◽  
Author(s):  
Wafa Adda Bedia ◽  
Mohammed Sid Ahmed Houari ◽  
Aicha Bessaim ◽  
Abdelmoumen Anis Bousahla ◽  
Abdelouahed Tounsi ◽  
...  

In present paper, a novel two variable shear deformation beam theories are developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending and buckling behaviors of nanobeams by using the nonlocal strain gradient theory. The advantage of this theory relies on its two-unknown displacement field as the Euler-Bernoulli beam theory, and it is capable of accurately capturing shear deformation effects, instead of three as in the well-known first shear deformation theory and higher-order shear deformation theory. A shear correction factor is, therefore, not needed. Equations of motion are obtained via Hamilton’s principle. Analytical solutions for the bending and buckling analysis are given for simply supported beams. Efficacy of the proposed model is shown through illustrative examples for bending buckling of nanobeams. The numerical results obtained are compared with those of other higher-order shear deformation beam theory. The results obtained are found to be accurate. Verification studies show that the proposed theory is not only accurate and simple in solving the bending and buckling behaviour of nanobeams, but also comparable with the other shear deformation theories which contain more number of unknowns


Sign in / Sign up

Export Citation Format

Share Document