Branch-switching procedure for post-buckling analysis of thin-walled steel members at elevated temperature

2019 ◽  
Vol 136 ◽  
pp. 90-98 ◽  
Author(s):  
Luca Possidente ◽  
Nicola Tondini ◽  
Jean-Marc Battini
2020 ◽  
Author(s):  
Abambres M ◽  
Camotim D ◽  
Silvestre N

<p>This paper presents and illustrates the application of an elastic-plastic Generalised Beam Theory (GBT) formulation, based on J<sub>2</sub>-flow plasticity theory, that makes it possible to perform physically and geometrically non-linear (post-buckling) analyses of prismatic thin-walled members (i) with arbitrary cross-section shapes, (ii) exhibiting any type of deformation pattern (global, local, distortional, warping, shear), (iii) made from non-linear materials with isotropic strain-hardening and (iv) containing initial imperfections, namely residual stresses and/or geometric imperfections, having generic distributions. After providing a brief overview of the main GBT assumptions, kinematical relations and equilibrium equations, the development of a novel non-linear beam finite element (FE) is addressed in some detail. Moreover, its application is illustrated through the presentation and discussion of numerical results concerning the post-buckling behaviour of a fixed-ended I-section steel column exhibiting local initial geometrical imperfections, namely (i) non-linear equilibrium paths, (ii) displacement profiles, (iii) stress diagrams/distributions and (iv) deformed configurations. For validation purposes, the GBT results are also compared with values yielded by Abaqus rigorous shell FE analyses.</p>


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Nuno Silvestre

This paper presents and illustrates the application of an elastic-plastic Generalised Beam Theory (GBT) formulation, based on J2-flow plasticity theory, that makes it possible to perform physically and geometrically non-linear (post-buckling) analyses of prismatic thin-walled members (i) with arbitrary cross-section shapes, (ii) exhibiting any type of deformation pattern (global, local, distortional, warping, shear), (iii) made from non-linear materials with isotropic strain-hardening and (iv) containing initial imperfections, namely residual stresses and/or geometric imperfections, having generic distributions. After providing a brief overview of the main GBT assumptions, kinematical relations and equilibrium equations, the development of a novel non-linear beam finite element (FE) is addressed in some detail. Moreover, its application is illustrated through the presentation and discussion of numerical results concerning the post-buckling behaviour of a fixed-ended I-section steel column exhibiting local initial geometrical imperfections, namely (i) non-linear equilibrium paths, (ii) displacement profiles, (iii) stress diagrams/distributions and (iv) deformed configurations. For validation purposes, the GBT results are also compared with values yielded by ABAQUS rigorous shell FE analyses.


2001 ◽  
Vol 39 (11) ◽  
pp. 907-938 ◽  
Author(s):  
F. Mohri ◽  
L. Azrar ◽  
M. Potier-Ferry

Sign in / Sign up

Export Citation Format

Share Document