scholarly journals Energy exchange in a dense urban environment – Part I: Temporal variability of long-term observations in central London

Urban Climate ◽  
2014 ◽  
Vol 10 ◽  
pp. 261-280 ◽  
Author(s):  
Simone Kotthaus ◽  
C.S.B. Grimmond
2021 ◽  
Author(s):  
Carla Gama ◽  
Alexandra Monteiro ◽  
Myriam Lopes ◽  
Ana Isabel Miranda

<p>Tropospheric ozone (O<sub>3</sub>) is a critical pollutant over the Mediterranean countries, including Portugal, due to systematic exceedances to the thresholds for the protection of human health. Due to the location of Portugal, on the Atlantic coast at the south-west point of Europe, the observed O<sub>3</sub> concentrations are very much influenced not only by local and regional production but also by northern mid-latitudes background concentrations. Ozone trends in the Iberian Peninsula were previously analysed by Monteiro et al. (2012), based on 10-years of O<sub>3</sub> observations. Nevertheless, only two of the eleven background monitoring stations analysed in that study are located in Portugal and these two stations are located in Porto and Lisbon urban areas. Although during pollution events O<sub>3</sub> levels in urban areas may be high enough to affect human health, the highest concentrations are found in rural locations downwind from the urban and industrialized areas, rather than in cities. This happens because close to the sources (e.g., in urban areas) freshly emitted NO locally scavenges O<sub>3</sub>. A long-term study of the spatial and temporal variability and trends of the ozone concentrations over Portugal is missing, aiming to answer the following questions:</p><p>-           What is the temporal variability of ozone concentrations?</p><p>-           Which trends can we find in observations?</p><p>-           How were the ozone spring maxima concentrations affected by the COVID-19 lockdown during spring 2020?</p><p>In this presentation, these questions will be answered based on the statistical analysis of O<sub>3</sub> concentrations recorded within the national air quality monitoring network between 2005 and 2020 (16 years). The variability of the surface ozone concentrations over Portugal, on the timescales from diurnal to annual, will be presented and discussed, taking into account the physical and chemical processes that control that variability. Using the TheilSen function from the OpenAir package for R (Carslaw and Ropkins 2012), which quantifies monotonic trends and calculates the associated p-value through bootstrap simulations, O<sub>3</sub> concentration long-term trends will be estimated for the different regions and environments (e.g., rural, urban).  Moreover, taking advantage of the unique situation provided by the COVID-19 lockdown during spring 2020, when the government imposed mandatory confinement and citizens movement restriction, leading to a reduction in traffic-related atmospheric emissions, the role of these emissions on ozone levels during the spring period will be studied and presented.</p><p> </p><p>Carslaw and Ropkins, 2012. Openair—an R package for air quality data analysis. Environ. Model. Softw. 27-28,52-61. https://doi.org/10.1016/j.envsoft.2011.09.008</p><p>Monteiro et al., 2012. Trends in ozone concentrations in the Iberian Peninsula by quantile regression and clustering. Atmos. Environ. 56, 184-193. https://doi.org/10.1016/j.atmosenv.2012.03.069</p>


2014 ◽  
Vol 2 (3) ◽  
pp. 33-46
Author(s):  
Zuzanna Bielec-Bąkowska

AbstractThis paper addresses spatial and temporal variability in the occurrence of thunderstorms and related precipitation in southern Poland between 1951 and 2010. The analysis was based on thunderstorm observations and daily precipitation totals (broken down into the few ranges) from 15 meteorological stations. It was found that precipitation accompanied an overwhelming majority of thunderstorms. The most frequent range of thunderstorm precipitation totals was 0.1–10.0 mm which accounted for 60% of all values while precipitation higher than 20.0 mm accounted only for ca. 8%. During the study period, long-term change in the number of days with thunderstorm precipitation within a certain range displayed no clear-cut trends. Exceptions included: 1) an increase in the number of days with thunderstorm precipitation in the lowest range of totals (0.1–10.0 mm) at Katowice, Tarnów, Rzeszów and Lesko and decrease at Mt. Kasprowy Wierch, 2) an increase in the range 10.1–20.0 mm at Zakopane and 20.1–30.0 mm at Opole, 3) a decrease of the top range (more than 30.0 mm) at Mt. Śnieżka. It was found that the heaviest thunderstorm precipitation events, i.e. totalling more than 30 mm, and those events that covered all or most of the study area, occurred at the time of air advection from the southern or eastern sectors and a passage of atmospheric fronts.


2019 ◽  
Vol 1 (1) ◽  
pp. 66-71
Author(s):  
Bogdan Stanescu ◽  
Adriana Cuciureanu

The present article presents the expertise realized by the Department of Environmental Monitoring Pollution Evaluation within the INCD ECOIND, in the evaluation of the quality of urban soils in the municipality of Bucharest and the main big cities in Romania. The current data available at the level of the 27 member states of the European Union show that annually over 100,000 hectares of land are introduced into the urban environment, a direct consequence of the development of cities. There are a number of legislative obstacles to strategic soil protection measures. Moreover, at the level of the local authorities there is a conflict regarding the measures of soil protection in the long term, on the one hand, and, the accelerated economic development in the short term, on the other. European environmental experts consider that the urban development, absolutely necessary for the economic growth, requires an adequate management of the natural resources in order for the development to be done on a sustainable basis, respectively to follow a series of strategic objectives. In our country, at least in the last decade, we find on a large scale the conversion of industrial areas into commercial or residential areas. The footprint of industrial activities can be found even after long periods of time present by identifying the remnant of soil pollution or in those areas known as historically polluted (for example the town of Copsa Mica). The conclusions stemming from the assessment of pollution in urban areas over large areas, in correlation with the potential sources of pollution, underline the need to monitor the quality of soils in the urban environment, but also to apply a performance management in order to protect this natural resource in the long term.


Sign in / Sign up

Export Citation Format

Share Document