scholarly journals Optimized sonoreactor for accelerative amyloid-fibril assays through enhancement of primary nucleation and fragmentation

2021 ◽  
pp. 105508
Author(s):  
Kichitaro Nakajima ◽  
Kentaro Noi ◽  
Keiichi Yamaguchi ◽  
Masatomo So ◽  
Kensuke Ikenaka ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Saeid Hadi Alijanvand ◽  
Alessia Peduzzo ◽  
Alexander K. Buell

Amyloid fibrils are ordered protein aggregates and a hallmark of many severe neurodegenerative diseases. Amyloid fibrils form through primary nucleation from monomeric protein, grow through monomer addition and proliferate through fragmentation or through the nucleation of new fibrils on the surface of existing fibrils (secondary nucleation). It is currently still unclear how amyloid fibrils initially form in the brain of affected individuals and how they are amplified. A given amyloid protein can sometimes form fibrils of different structure under different solution conditions in vitro, but often fibrils found in patients are highly homogeneous. These findings suggest that the processes that amplify amyloid fibrils in vivo can in some cases preserve the structural characteristics of the initial seed fibrils. It has been known for many years that fibril growth by monomer addition maintains the structure of the seed fibril, as the latter acts as a template that imposes its fold on the newly added monomer. However, for fibrils that are formed through secondary nucleation it was, until recently, not clear whether the structure of the seed fibril is preserved. Here we review the experimental evidence on this question that has emerged over the last years. The overall picture is that the fibril strain that forms through secondary nucleation is mostly defined by the solution conditions and intrinsic structural preferences, and not by the seed fibril strain.


2015 ◽  
Vol 108 (3) ◽  
pp. 632-643 ◽  
Author(s):  
Kym Eden ◽  
Ryan Morris ◽  
Jay Gillam ◽  
Cait E. MacPhee ◽  
Rosalind J. Allen

Author(s):  
T. Shirahama ◽  
M. Skinner ◽  
A.S. Cohen

A1thought the mechanisms of amyloidogenesis have not been entirely clarified, proteolysis of the parent proteins may be one of the important steps in the amyloid fibril formation. Recently, we reported that "dense fibrillar inclusions" (DFI), which had the characteristics of lysosomes and contained organized fibrillar profiles as well, were observed in the reticuloendothelial cells in close association with the foci of new amyloid deposits. We considered the findings as evidence for the involvement of lysosomal system in amyloid fibril formation (l). In the present study, we attempted to determine the identity of the contents of the DFI by the use of antisera against the amyloid protein (AA) and an immuno-electron microscopic technique.Amyloidosis was induced in CBA/J mice by daily injections of casein (l). AA was isolated from amyloid-laden spleens by gel filtration and antibody to it was produced in rabbits (2). For immunocytochemistry, the unlabeled antibody enzyme method (3) was employed.


Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


2005 ◽  
Vol 352 (4) ◽  
pp. 952-960 ◽  
Author(s):  
Kei-ichi Yamaguchi ◽  
Satoshi Takahashi ◽  
Tomoji Kawai ◽  
Hironobu Naiki ◽  
Yuji Goto
Keyword(s):  

FEBS Journal ◽  
2007 ◽  
Vol 274 (24) ◽  
pp. 6290-6304 ◽  
Author(s):  
Agata Rekas ◽  
Lucy Jankova ◽  
David C. Thorn ◽  
Roberto Cappai ◽  
John A. Carver

Sign in / Sign up

Export Citation Format

Share Document