Effect of pH and inhibitors on beta-amyloid fibril assembly

Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.

2021 ◽  
Vol 8 ◽  
Author(s):  
Saeid Hadi Alijanvand ◽  
Alessia Peduzzo ◽  
Alexander K. Buell

Amyloid fibrils are ordered protein aggregates and a hallmark of many severe neurodegenerative diseases. Amyloid fibrils form through primary nucleation from monomeric protein, grow through monomer addition and proliferate through fragmentation or through the nucleation of new fibrils on the surface of existing fibrils (secondary nucleation). It is currently still unclear how amyloid fibrils initially form in the brain of affected individuals and how they are amplified. A given amyloid protein can sometimes form fibrils of different structure under different solution conditions in vitro, but often fibrils found in patients are highly homogeneous. These findings suggest that the processes that amplify amyloid fibrils in vivo can in some cases preserve the structural characteristics of the initial seed fibrils. It has been known for many years that fibril growth by monomer addition maintains the structure of the seed fibril, as the latter acts as a template that imposes its fold on the newly added monomer. However, for fibrils that are formed through secondary nucleation it was, until recently, not clear whether the structure of the seed fibril is preserved. Here we review the experimental evidence on this question that has emerged over the last years. The overall picture is that the fibril strain that forms through secondary nucleation is mostly defined by the solution conditions and intrinsic structural preferences, and not by the seed fibril strain.


2020 ◽  
Vol 13 ◽  
Author(s):  
Madeleine R. Brown ◽  
Sheena E. Radford ◽  
Eric W. Hewitt

Amyloid plaques are a pathological hallmark of Alzheimer’s disease. The major component of these plaques are highly ordered amyloid fibrils formed by amyloid-β (Aβ) peptides. However, whilst Aβ amyloid fibril assembly has been subjected to detailed and extensive analysis in vitro, these studies may not reproduce how Aβ fibrils assemble in the brain. This is because the brain represents a highly complex and dynamic environment, and in Alzheimer’s disease multiple cofactors may affect the assembly of Aβ fibrils. Moreover, in vivo amyloid plaque formation will reflect the balance between the assembly of Aβ fibrils and their degradation. This review explores the roles of microglia as cofactors in Aβ aggregation and in the clearance of amyloid deposits. In addition, we discuss how infection may be an additional cofactor in Aβ fibril assembly by virtue of the antimicrobial properties of Aβ peptides. Crucially, by understanding the roles of microglia and infection in Aβ amyloid fibril assembly it may be possible to identify new therapeutic targets for Alzheimer’s disease.


2011 ◽  
Vol 434 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Yong Yu ◽  
Hai-Yan Wang ◽  
Ming Bai ◽  
Sarah Perrett

Ure2, the protein determinant of the Saccharomyces cerevisiae prion [URE3], has a natively disordered N-terminal domain that is important for prion formation in vivo and amyloid formation in vitro; the globular C-domain has a glutathione transferase-like fold. In the present study, we swapped the position of the N- and C-terminal regions, with or without an intervening peptide linker, to create the Ure2 variants CLN-Ure2 and CN-Ure2 respectively. The native structural content and stability of the variants were the same as wild-type Ure2, as indicated by enzymatic activity, far-UV CD analysis and equilibrium denaturation. CLN-Ure2 was able to form amyloid-like fibrils, but with a significantly longer lag time than wild-type Ure2; and the two proteins were unable to cross-seed. Under the same conditions, CN-Ure2 showed limited ability to form fibrils, but this was improved after addition of 0.03 M guanidinium chloride. As for wild-type Ure2, allosteric enzyme activity was observed in fibrils of CLN-Ure2 and CN-Ure2, consistent with retention of the native-like dimeric structure of the C-domains within the fibrils. Proteolytically digested fibrils of CLN-Ure2 and CN-Ure2 showed the same residual fibril core morphology as wild-type Ure2. The results suggest that the position of the prion domain affects the ability of Ure2 to form fibrils primarily due to effects on its flexibility.


1991 ◽  
Vol 55 ◽  
pp. 275
Author(s):  
Eric Chleide ◽  
Shinji Shibanoki ◽  
Taizo Kubo ◽  
Miki Kogure ◽  
Koichi Ishikawa

1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


1981 ◽  
Vol 45 (03) ◽  
pp. 285-289 ◽  
Author(s):  
J P Allain ◽  
A Gaillandre ◽  
D Frommel

SummaryFactor VIII complex and its interaction with antibodies to factor VIII have been studied in 17 non-haemophilic patients with factor VIII inhibitor. Low VIII:C and high VIIIR.Ag levels were found in all patients. VIII:WF levels were 50% of those of VTIIRrAg, possibly related to an increase of poorly aggregated and electrophoretically fast moving VIIIR:Ag oligomers.Antibody function has been characterized by kinetics of VIII :C inactivation, saturability by normal plasma and the slope of the affinity curve. Two major patterns were observed:1) Antibodies from 6 patients behaved similarly to those from haemophiliacs by showing second order inhibition kinetics, easy saturability and steep affinity slope (> 1).2) Antibodies from other patients, usually with lower titres, inactivated VIII :C according to complex order kinetics, were not saturable, and had a less steep affinity slope (< 0.7). In native plasma, or after mixing with factor VIII concentrate, antibodies of the second group did not form immune complexes with the whole factor VIII molecular complex. However, dissociation procedures did release some antibodies from apparently low molecular weight complexes formed in vivo or in vitro. For appropriate management of non-haemophilic patients with factor VIII inhibitor, it is important to determine the functional properties of their antibodies to factor VIII.


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


Sign in / Sign up

Export Citation Format

Share Document