scholarly journals The NYCBH vaccinia virus deleted for the innate immune evasion gene, E3L, protects rabbits against lethal challenge by rabbitpox virus

Vaccine ◽  
2011 ◽  
Vol 29 (44) ◽  
pp. 7659-7669 ◽  
Author(s):  
Karen L. Denzler ◽  
Amanda D. Rice ◽  
Amy L. MacNeill ◽  
Nobuko Fukushima ◽  
Scott F. Lindsey ◽  
...  
2015 ◽  
Vol 89 (20) ◽  
pp. 10489-10499 ◽  
Author(s):  
William D. Arndt ◽  
Samantha Cotsmire ◽  
Kelly Trainor ◽  
Heather Harrington ◽  
Kevin Hauns ◽  
...  

ABSTRACTThe vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids. VACV with a genome encoding a similarly truncated E3L protein (VACV-E3LΔ37N) has been shown to be attenuated in mouse models, and infection with VACV-E3LΔ37N has been shown to lead to activation of the host antiviral protein kinase R pathway. In this report, we present data demonstrating that, despite containing a truncated E3 homologue, MPXV phenotypically resembles a wild-type (wt) VACV rather than VACV-E3LΔ37N. Thus, MPXV appears to contain a gene or genes that can suppress the phenotypes associated with an N-terminal truncation in E3. The suppression maps to sequences outside F3L, suggesting that the suppression is extragenic in nature. Thus, MPXV appears to have evolved mechanisms to minimize the effects of partial inactivation of its E3 homologue.IMPORTANCEPoxviruses have evolved to have many mechanisms to evade host antiviral innate immunity; these mechanisms may allow these viruses to cause disease. Within the family of poxviruses, variola virus (which causes smallpox) is the most pathogenic, while monkeypox virus is intermediate in pathogenicity between vaccinia virus and variola virus. Understanding the mechanisms of monkeypox virus innate immune evasion will help us to understand the evolution of poxvirus innate immune evasion capabilities, providing a better understanding of how poxviruses cause disease.


2017 ◽  
Vol 114 (43) ◽  
pp. 11506-11511 ◽  
Author(s):  
Heather Koehler ◽  
Samantha Cotsmire ◽  
Jeffrey Langland ◽  
Karen V. Kibler ◽  
Daniel Kalman ◽  
...  

Virology ◽  
2015 ◽  
Vol 479-480 ◽  
pp. 122-130 ◽  
Author(s):  
Christopher F. Basler

2019 ◽  
Vol 13 (1) ◽  
pp. 219-222 ◽  
Author(s):  
Alvaro I. Herrera ◽  
Abhinav Dubey ◽  
Brian V. Geisbrecht ◽  
Haribabu Arthanari ◽  
Om Prakash

2009 ◽  
Vol 53 (10) ◽  
pp. 4490-4494 ◽  
Author(s):  
Amit Sarkar ◽  
Kit Tilly ◽  
Philip Stewart ◽  
Aaron Bestor ◽  
James M. Battisti ◽  
...  

ABSTRACT We hypothesize a potential role for Borrelia burgdorferi OspC in innate immune evasion at the initial stage of mammalian infection. We demonstrate that B. burgdorferi is resistant to high levels (>200 μg/ml) of cathelicidin and that this antimicrobial peptide exhibits limited binding to the spirochetal outer membrane, irrespective of OspC or other abundant surface lipoproteins. We conclude that the essential role of OspC is unrelated to resistance to this component of innate immunity.


2018 ◽  
Vol 115 (16) ◽  
pp. E3788-E3797 ◽  
Author(s):  
Quentin Bernard ◽  
Alexis A. Smith ◽  
Xiuli Yang ◽  
Juraj Koci ◽  
Shelby D. Foor ◽  
...  

Borrelia burgdorferiis one of the few extracellular pathogens capable of establishing persistent infection in mammals. The mechanisms that sustain long-term survival of this bacterium are largely unknown. Here we report a unique innate immune evasion strategy ofB. burgdorferi, orchestrated by a surface protein annotated as BBA57, through its modulation of multiple spirochete virulent determinants. BBA57 function is critical for early infection but largely redundant for later stages of spirochetal persistence, either in mammals or in ticks. The protein influences host IFN responses as well as suppresses multiple host microbicidal activities involving serum complement, neutrophils, and antimicrobial peptides. We also discovered a remarkable plasticity in BBA57-mediated spirochete immune evasion strategy because its loss, although resulting in near clearance of pathogens at the inoculum site, triggers nonheritable adaptive changes that exclude detectable nucleotide alterations in the genome but incorporate transcriptional reprograming events. Understanding the malleability in spirochetal immune evasion mechanisms that ensures their host persistence is critical for the development of novel therapeutic and preventive approaches to combat long-term infections like Lyme borreliosis.


Sign in / Sign up

Export Citation Format

Share Document