Chimpanzee adenovirus vector-based avian influenza vaccine completely protects mice against lethal challenge of H5N1

Vaccine ◽  
2016 ◽  
Vol 34 (41) ◽  
pp. 4875-4883 ◽  
Author(s):  
Tao Cheng ◽  
Xiang Wang ◽  
Yufeng Song ◽  
Xinying Tang ◽  
Chao Zhang ◽  
...  
2012 ◽  
Vol 20 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Ciaran D. Scallan ◽  
Debora W. Tingley ◽  
Jonathan D. Lindbloom ◽  
James S. Toomey ◽  
Sean N. Tucker

ABSTRACTAn oral gene-based avian influenza vaccine would allow rapid development and simplified distribution, but efficacy has previously been difficult to achieve by the oral route. This study assessed protection against avian influenza virus challenge using a chimeric adenovirus vector expressing hemagglutinin and a double-stranded RNA adjuvant. Immunized ferrets and mice were protected upon lethal challenge. Further, ferrets immunized by the peroral route induced cross-clade neutralizing antibodies, and the antibodies were selective against hemagglutinin, not the vector. Similarly, experiments in mice demonstrated selective immune responses against HA with peroral delivery and the ability to circumvent preexisting vector immunity.


2014 ◽  
Vol 27 (4) ◽  
pp. 167-173 ◽  
Author(s):  
Michael St. Paul ◽  
Neda Barjesteh ◽  
Jennifer T. Brisbin ◽  
Alexander Ian Villaneueva ◽  
Leah R. Read ◽  
...  

Drug Delivery ◽  
2018 ◽  
Vol 25 (1) ◽  
pp. 773-779 ◽  
Author(s):  
Weiping Cao ◽  
Margarita Mishina ◽  
Samuel Amoah ◽  
Wadzanai P. Mboko ◽  
Caitlin Bohannon ◽  
...  

Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 143
Author(s):  
Gendeal M. Fadlallah ◽  
Fuying Ma ◽  
Zherui Zhang ◽  
Mengchan Hao ◽  
Juefu Hu ◽  
...  

H7 subtype avian influenza viruses have caused outbreaks in poultry, and even human infection, for decades in both Eurasia and North America. Although effective vaccines offer the best protection against avian influenza viruses, antigenically distinct Eurasian and North American lineage subtype H7 viruses require the development of cross-protective vaccine candidates. In this study, a methodology called computationally optimized broadly reactive antigen (COBRA) was used to develop four consensus H7 antigens (CH7-22, CH7-24, CH7-26, and CH7-28). In vitro experiments confirmed the binding of monoclonal antibodies to the head and stem domains of cell surface-expressed consensus HAs, indicating display of their antigenicity. Immunization with DNA vaccines encoding the four antigens was evaluated in a mouse model. Broadly reactive antibodies against H7 viruses from Eurasian and North American lineages were elicited and detected by binding, inhibition, and neutralizing analyses. Further infection with Eurasian H7N9 and North American H7N3 virus strains confirmed that CH7-22 and CH7-24 conferred the most effective protection against hetero-lethal challenge. Our data showed that the consensus H7 vaccines elicit a broadly reactive, protective response against Eurasian and North American lineage H7 viruses, which are suitable for development against other zoonotic influenza viruses.


Sign in / Sign up

Export Citation Format

Share Document