npj Vaccines
Latest Publications


TOTAL DOCUMENTS

435
(FIVE YEARS 327)

H-INDEX

22
(FIVE YEARS 13)

Published By Springer Nature

2059-0105

npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Maxwell L. Neal ◽  
Fergal J. Duffy ◽  
Ying Du ◽  
John D. Aitchison ◽  
Kenneth D. Stuart

AbstractIdentifying preimmunization biological characteristics that promote an effective vaccine response offers opportunities for illuminating the critical immunological mechanisms that confer vaccine-induced protection, for developing adjuvant strategies, and for tailoring vaccination regimens to individuals or groups. In the context of malaria vaccine research, studying preimmunization correlates of protection can help address the need for a widely effective malaria vaccine, which remains elusive. In this study, common preimmunization correlates of protection were identified using transcriptomic data from four independent, heterogeneous malaria vaccine trials in adults. Systems-based analyses showed that a moderately elevated inflammatory state prior to immunization was associated with protection against malaria challenge. Functional profiling of protection-associated genes revealed the importance of several inflammatory pathways, including TLR signaling. These findings, which echo previous studies that associated enhanced preimmunization inflammation with protection, illuminate common baseline characteristics that set the stage for an effective vaccine response across diverse malaria vaccine strategies in adults.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Paola Villanueva ◽  
Ushma Wadia ◽  
Nigel Crawford ◽  
Nicole L. Messina ◽  
Tobias R. Kollmann ◽  
...  

AbstractThe reported frequency and types of adverse events following initial vaccination and revaccination with Bacille Calmette-Guérin (BCG) varies worldwide. Using active surveillance in a randomised controlled trial of BCG vaccination (the BRACE trial), we determined the incidence and risk factors for the development of BCG injection site abscess and regional lymphadenopathy. Injection site abscess occurred in 3% of 1387 BCG-vaccinated participants; the majority (34/41, 83%) resolved without treatment. The rate was higher in BCG-revaccinated participants (OR 3.6, 95% CI 1.7–7.5), in whom abscess onset was also earlier (median 16 vs. 27 days, p = 0.008). No participant with an abscess had a positive interferon-gamma release assay. Regional lymphadenopathy occurred in 48/1387 (3%) of BCG-vaccinated participants, with a higher rate in revaccinated participants (OR 2.1, 95% CI 1.1–3.9). BCG-associated lymphadenopathy, but not injection site abscess, was influenced by age and sex. A previous positive tuberculin skin test was not associated with local reactions. The increased risk of injection site abscess or lymphadenopathy following BCG revaccination is relevant to BCG vaccination policy in an era when BCG is increasingly being considered for novel applications.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Kazutoyo Miura ◽  
Eizo Takashima ◽  
Thao P. Pham ◽  
Bingbing Deng ◽  
Luwen Zhou ◽  
...  

AbstractPfs230 is a leading malaria transmission blocking vaccine (TBV) candidate. Comprising 3135 amino acids (aa), the large size of Pfs230 necessitates the use of sub-fragments as vaccine immunogens. Therefore, determination of which regions induce functional antibody responses is essential. We previously reported that of 27 sub-fragments spanning the entire molecule, only five induced functional antibodies. A “functional” antibody is defined herein as one that inhibits Plasmodium falciparum parasite development in mosquitoes in a standard membrane-feeding assay (SMFA). These five sub-fragments were found within the aa 443–1274 range, and all contained aa 543–730. Here, we further pinpoint the location of epitopes within Pfs230 that are recognized by functional antibodies using antibody depletion and enrichment techniques. Functional epitopes were not found within the aa 918–1274 region. Within aa 443–917, further analysis showed the existence of functional epitopes not only within the aa 543–730 region but also outside of it. Affinity-purified antibodies using a synthetic peptide matching aa 543–588 showed activity in the SMFA. Immunization with a synthetic peptide comprising this segment, formulated either as a carrier-protein conjugate vaccine or with a liposomal vaccine adjuvant system, induced antibodies in mice that were functional in the SMFA. These findings provide key insights for Pfs230-based vaccine design and establish the feasibility for the use of synthetic peptide antigens for a malaria TBV.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Changyoun Kim ◽  
Armine Hovakimyan ◽  
Karen Zagorski ◽  
Tatevik Antonyan ◽  
Irina Petrushina ◽  
...  

AbstractAccumulation of misfolded proteins such as amyloid-β (Aβ), tau, and α-synuclein (α-Syn) in the brain leads to synaptic dysfunction, neuronal damage, and the onset of relevant neurodegenerative disorder/s. Dementia with Lewy bodies (DLB) and Parkinson’s disease (PD) are characterized by the aberrant accumulation of α-Syn intracytoplasmic Lewy body inclusions and dystrophic Lewy neurites resulting in neurodegeneration associated with inflammation. Cell to cell propagation of α-Syn aggregates is implicated in the progression of PD/DLB, and high concentrations of anti-α-Syn antibodies could inhibit/reduce the spreading of this pathological molecule in the brain. To ensure sufficient therapeutic concentrations of anti-α-Syn antibodies in the periphery and CNS, we developed four α-Syn DNA vaccines based on the universal MultiTEP platform technology designed especially for the elderly with immunosenescence. Here, we are reporting on the efficacy and immunogenicity of these vaccines targeting three B-cell epitopes of hα-Syn aa85–99 (PV-1947D), aa109–126 (PV-1948D), aa126–140 (PV-1949D) separately or simultaneously (PV-1950D) in a mouse model of synucleinopathies mimicking PD/DLB. All vaccines induced high titers of antibodies specific to hα-Syn that significantly reduced PD/DLB-like pathology in hα-Syn D line mice. The most significant reduction of the total and protein kinase resistant hα-Syn, as well as neurodegeneration, were observed in various brain regions of mice vaccinated with PV-1949D and PV-1950D in a sex-dependent manner. Based on these preclinical data, we selected the PV-1950D vaccine for future IND enabling preclinical studies and clinical development.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Lisa H. Tostanoski ◽  
Abishek Chandrashekar ◽  
Shivani Patel ◽  
Jingyou Yu ◽  
Catherine Jacob-Dolan ◽  
...  

AbstractSARS-CoV-2 Spike-specific binding and neutralizing antibodies, elicited either by natural infection or vaccination, have emerged as potential correlates of protection. An important question, however, is whether vaccine-elicited antibodies in humans provide direct, functional protection from SARS-CoV-2 infection and disease. In this study, we explored directly the protective efficacy of human antibodies elicited by Ad26.COV2.S vaccination by adoptive transfer studies. IgG from plasma of Ad26.COV2.S vaccinated individuals was purified and transferred into naïve golden Syrian hamster recipients, followed by intra-nasal challenge of the hamsters with SARS-CoV-2. IgG purified from Ad26.COV2.S-vaccinated individuals provided dose-dependent protection in the recipient hamsters from weight loss following challenge. In contrast, IgG purified from placebo recipients provided no protection in this adoptive transfer model. Attenuation of weight loss correlated with binding and neutralizing antibody titers of the passively transferred IgG. This study suggests that Ad26.COV2.S-elicited antibodies in humans are mechanistically involved in protection against SARS-CoV-2.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Christopher L. D. McMillan ◽  
Stacey T. M. Cheung ◽  
Naphak Modhiran ◽  
James Barnes ◽  
Alberto A. Amarilla ◽  
...  

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Clement A. Meseda ◽  
Charles B. Stauft ◽  
Prabhuanand Selvaraj ◽  
Christopher Z. Lien ◽  
Cyntia Pedro ◽  
...  

AbstractNumerous vaccine candidates against SARS-CoV-2, the causative agent of the COVID-19 pandemic, are under development. The majority of vaccine candidates to date are designed to induce immune responses against the viral spike (S) protein, although different forms of S antigen have been incorporated. To evaluate the yield and immunogenicity of different forms of S, we constructed modified vaccinia virus Ankara (MVA) vectors expressing full-length S (MVA-S), the RBD, and soluble S ectodomain and tested their immunogenicity in dose-ranging studies in mice. All three MVA vectors induced spike-specific immunoglobulin G after one subcutaneous immunization and serum titers were boosted following a second immunization. The MVA-S and MVA-ssM elicited the strongest neutralizing antibody responses. In assessing protective efficacy, MVA-S-immunized adult Syrian hamsters were challenged with SARS-CoV-2 (USA/WA1/2020). MVA-S-vaccinated hamsters exhibited less severe manifestations of atypical pneumocyte hyperplasia, hemorrhage, vasculitis, and especially consolidation, compared to control animals. They also displayed significant reductions in gross pathology scores and weight loss, and a moderate reduction in virus shedding was observed post challenge in nasal washes. There was evidence of reduced viral replication by in situ hybridization, although the reduction in viral RNA levels in lungs and nasal turbinates did not reach significance. Taken together, the data indicate that immunization with two doses of an MVA vector expressing SARS-CoV-2 S provides protection against a stringent SARS-CoV-2 challenge of adult Syrian hamsters, reaffirm the utility of this animal model for evaluating candidate SARS-CoV-2 vaccines, and demonstrate the value of an MVA platform in facilitating vaccine development against SARS-CoV-2.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Arun B. Arunachalam ◽  
Penny Post ◽  
Deborah Rudin

AbstractThe influenza vaccine field has been constantly evolving to improve the speed, scalability, and flexibility of manufacturing, and to improve the breadth and longevity of the protective immune response across age groups, giving rise to an array of next generation vaccines in development. Among these, the recombinant influenza vaccine tetravalent (RIV4), using a baculovirus expression vector system to express recombinant haemagglutinin (rHA) in insect cells, is the only one to have reached the market and has been studied extensively. We describe how the unique structural features of rHA in RIV4 improve protective immune responses compared to conventional influenza vaccines made from propagated influenza virus. In addition to the sequence integrity, characteristic of recombinant proteins, unique post-translational processing of the rHA in insect cells instills favourable tertiary and quaternary structural features. The absence of protease-driven cleavage and addition of simple N-linked glycans help to preserve and expose certain conserved epitopes on HA molecules, which are likely responsible for the high levels of broadly cross-reactive and protective antibodies with rare specificities observed with RIV4. Furthermore, the presence of uniform compact HA oligomers and absence of egg proteins, viral RNA or process impurities, typically found in conventional vaccines, are expected to eliminate potential adverse reactions to these components in susceptible individuals with the use of RIV4. These distinct structural features and purity of the recombinant HA vaccine thus provide a number of benefits in vaccine performance which can be extended to other viral targets, such as for COVID-19.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Puthupparampil V. Scaria ◽  
Charles Anderson ◽  
Olga Muratova ◽  
Nada Alani ◽  
Hung V. Trinh ◽  
...  

AbstractMalaria transmission-blocking vaccines candidates based on Pfs25 and Pfs230 have advanced to clinical studies. Exoprotein A (EPA) conjugate of Pfs25 in Alhydrogel® developed functional immunity in humans, with limited durability. Pfs230 conjugated to EPA (Pfs230D1-EPA) with liposomal adjuvant AS01 is currently in clinical trials in Mali. Studies with these conjugates revealed that non-human primates are better than mice to recapitulate the human immunogenicity and functional activity. Here, we evaluated the effect of ALFQ, a liposomal adjuvant consisting of TLR4 agonist and QS21, on the immunogenicity of Pfs25-EPA and Pfs230D1-EPA in Rhesus macaques. Both conjugates generated strong antibody responses and functional activity after two vaccinations though activity declined rapidly. A third vaccination of Pfs230D1-EPA induced functional activity lasting at least 9 months. Antibody avidity increased with each vaccination and correlated strongly with functional activity. IgG subclass analysis showed induction of Th1 and Th2 subclass antibody levels that correlated with activity.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Sudha Chivukula ◽  
Timothy Plitnik ◽  
Timothy Tibbitts ◽  
Shrirang Karve ◽  
Anusha Dias ◽  
...  

AbstractRecent approval of mRNA vaccines for emergency use against COVID-19 is likely to promote rapid development of mRNA-based vaccines targeting a wide range of infectious diseases. Compared to conventional approaches, this vaccine modality promises comparable potency while substantially accelerating the pace of development and deployment of vaccine doses. Already demonstrated successfully for single antigen vaccines such as for COVID-19, this technology could be optimized for complex multi-antigen vaccines. Herein, utilizing multiple influenza antigens, we demonstrated the suitability of the mRNA therapeutic (MRT) platform for such applications. Seasonal influenza vaccines have three or four hemagglutinin (HA) antigens of different viral subtypes. In addition, influenza neuraminidase (NA), a tetrameric membrane protein, is identified as an antigen that has been linked to protective immunity against severe viral disease. We detail the efforts in optimizing formulations of influenza candidates that use unmodified mRNA encoding full-length HA or full-length NA encapsulated in lipid nanoparticles (LNPs). HA and NA mRNA-LNP formulations, either as monovalent or as multivalent vaccines, induced strong functional antibody and cellular responses in non-human primates and such antigen-specific antibody responses were associated with protective efficacy against viral challenge in mice.


Sign in / Sign up

Export Citation Format

Share Document