avian influenza
Recently Published Documents


TOTAL DOCUMENTS

8749
(FIVE YEARS 1661)

H-INDEX

136
(FIVE YEARS 15)

2022 ◽  
Author(s):  
Valentina Caliendo ◽  
Nicola S Lewis ◽  
Anne Pohlmann ◽  
Jonas Waldenstrom ◽  
Marielle van Toor ◽  
...  

Highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage (GsGd), which threaten the health of poultry, wildlife and humans, are spreading across Asia, Europe and Africa, but are currently absent from Oceania and the Americas. In December 2021, H5N1 HPAI viruses were detected in poultry and a free-living gull in St. John, Newfoundland and Labrador, Canada. Phylogenetic analysis showed that these viruses were most closely related to HPAI GsGd viruses circulating in northwestern Europe in spring 2021. Analysis of wild bird migration suggested that these viruses may have been carried across the Atlantic via Iceland, Greenland/Arctic or pelagic routes. The here documented incursion of HPAI GsGd viruses into North America raises concern for further virus spread across the Americas by wild bird migration.


Author(s):  
Md. Ashiqur Rahman ◽  
Joseph P. Belgrad ◽  
Md. Abu Sayeed ◽  
Md. Sadeque Abdullah ◽  
Shanta Barua ◽  
...  

Author(s):  
Wanwan Yan ◽  
Hongrui Cui ◽  
Marc Engelsma ◽  
Nancy Beerens ◽  
Monique M. van Oers ◽  
...  

The H9N2 low pathogenicity avian influenza (LPAI) virus has become endemic in poultry globally. In several Asian countries, vaccination against H9N2 avian influenza virus (AIV) was approved to reduce economic losses in the poultry industry.


Author(s):  
Keiichi Taniguchi ◽  
Yoshinori Ando ◽  
Masanori Kobayashi ◽  
Shinsuke Toba ◽  
Haruaki Nobori ◽  
...  

Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-hour delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.


Author(s):  
Andrew M. Ramey ◽  
Nichola J. Hill ◽  
Thomas J. DeLiberto ◽  
Samantha E. J. Gibbs ◽  
M. Camille Hopkins ◽  
...  

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
Dae-sung Yoo ◽  
Sung-Il Kang ◽  
Yu-Na Lee ◽  
Eun-Kyoung Lee ◽  
Woo-yuel Kim ◽  
...  

The past two decades have seen the emergence of highly pathogenic avian influenza (HPAI) infections that are characterized as extremely contagious, with a high fatality rate in chickens, and humans; this has sparked considerable concerns for global health. Generally, the new variant of the HPAI virus crossed into various countries through wild bird migration, and persisted in the local environment through the interactions between wild and farmed birds. Nevertheless, no studies have found informative cases associated with connecting local persistence and long-range dispersal. During the 2016–2017 HPAI H5N6 epidemic in South Korea, we observed several waterfowls with avian influenza infection under telemetric monitoring. Based on the telemetry records and surveillance data, we conducted a case study to test hypotheses related to the transmission pathway between wild birds and poultry. One sedentary wildfowl naturally infected with HPAI H5N6, which overlapped with the home range of one migratory bird with H5-specific antibody-positive, showed itself to be phylogenetically close to the isolates from a chicken farm located within its habitat. Our study is the first observational study that provides scientific evidence supporting the hypothesis that the HPAI spillover into poultry farms is caused by local persistence in sedentary birds, in addition to its long-range dispersal by sympatric migratory birds.


2022 ◽  
Vol 10 (1) ◽  
pp. 133
Author(s):  
Daniel S. Layton ◽  
Kostlend Mara ◽  
Meiling Dai ◽  
Luis Fernando Malaver-Ortega ◽  
Tamara J. Gough ◽  
...  

Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune mechanisms that lead to increased interferon (IFN) production. To investigate how alterations in the interferon signaling pathway affect the cellular response to infection in the chicken, we used CRISPR/Cas9 to generate a chicken cell line that lacks a functional the type I interferon receptor (IFNAR1). We then assessed viral infections with the WSN strain of influenza. Cells lacking a functional IFNAR1 receptor showed reduced expression of the interferon stimulated genes (ISG) such as Protein Kinase R (PKR) and Myxovirus resistance (Mx) and were more susceptible to viral infection with WSN. We further investigated the role or IFNAR1 on low pathogenicity avian influenza (LPAI) strains (H7N9) and a HPAI strain (H5N1). Intriguingly, Ifnar−/− cells appeared more resistant than WT cells when infected with HPAI virus, potentially indicating a different interaction between H5N1 and the IFN signaling pathway. Our findings support that ChIFNAR1 is a key component of the chicken IFN signaling pathway and these data add contributions to the field of host-avian pathogen interaction and innate immunity in chickens.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 111
Author(s):  
Keiichi Taniguchi ◽  
Yoshinori Ando ◽  
Masanori Kobayashi ◽  
Shinsuke Toba ◽  
Haruaki Nobori ◽  
...  

Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.


Sign in / Sign up

Export Citation Format

Share Document