oral route
Recently Published Documents





2022 ◽  
Vol 2022 ◽  
pp. 1-9
Sara Assadpour ◽  
Mohammad Reza Shiran ◽  
Peyman Asadi ◽  
Javad Akhtari ◽  
Amirhossein Sahebkar

Sumatriptan (ST) is a commonly prescribed drug for treating migraine. The efficiency of several routes of ST administration has been investigated. Recently, the intranasal route with different delivery systems has gained interest owing to its fast-acting and effectiveness. The present study is aimed at reviewing the available studies on novel delivery systems for intranasal ST administration. The oral route of ST administration is common but complicated with some problems. Gastroparesis in patients with migraine may reduce the absorption and effectiveness of ST upon oral use. Furthermore, the gastrointestinal (GI) system and hepatic metabolism can alter the pharmacokinetics and clinical effects of ST. The bioavailability of conventional nasal liquids is low due to the deposition of a large fraction of the delivered dose of a drug in the nasal cavity. Several delivery systems have been utilized in a wide range of preclinical and clinical studies to enhance the bioavailability of ST. The beneficial effects of the dry nasal powder of ST (AVP-825) have been proven in clinical studies. Moreover, other delivery systems based on microemulsions, microspheres, and nanoparticles have been introduced, and their higher bioavailability and efficacy were demonstrated in preclinical studies. Based on the extant findings, harnessing novel delivery systems can improve the bioavailability of ST and enhance its effectiveness against migraine attacks. However, further clinical studies are needed to approve the safety and efficacy of employing such systems in humans.

2022 ◽  
Vol 23 (2) ◽  
pp. 836
Melissa Jones ◽  
Corina Mihaela Ionescu ◽  
Daniel Walker ◽  
Susbin Raj Wagle ◽  
Bozica Kovacevic ◽  

Biguanides, particularly the widely prescribed drug metformin, have been marketed for many decades and have well-established absorption profiles. They are commonly administered via the oral route and, despite variation in oral uptake, remain commonly prescribed for diabetes mellitus, typically type 2. Studies over the last decade have focused on the design and development of advanced oral delivery dosage forms using bio nano technologies and novel drug carrier systems. Such studies have demonstrated significantly enhanced delivery and safety of biguanides using nanocapsules. Enhanced delivery and safety have widened the potential applications of biguanides not only in diabetes but also in other disorders. Hence, this review aimed to explore biguanides’ pharmacokinetics, pharmacodynamics, and pharmaceutical applications in diabetes, as well as in other disorders.

2022 ◽  
Vol 8 ◽  
Julie Niemann Holm-Jacobsen ◽  
Caspar Bundgaard-Nielsen ◽  
Louise Søndergaard Rold ◽  
Ann-Maria Jensen ◽  
Shakil Shakar ◽  

Background: SARS-CoV-2 has resulted in a global pandemic since its outbreak in Wuhan, 2019. Virus transmission primarily occurs through close contact, respiratory droplets, and aerosol particles. However, since SARS-CoV-2 has been detected in fecal and rectal samples from infected individuals, the fecal-oral route has been suggested as another potential route of transmission. This study aimed to investigate the prevalence and clinical implications of rectal SARS-CoV-2 shedding in Danish COVID-19 patients.Methods: Hospitalized and non-hospitalized adults and children who were recently tested with a pharyngeal COVID-19 test, were included in the study. A rectal swab was collected from all participants. Hospitalized adults and COVID-19 positive children were followed with both pharyngeal and rectal swabs until two consecutive negative results were obtained. RT-qPCR targeting the envelope gene was used to detect SARS-CoV-2 in the samples. Demographic, medical, and biochemical information was obtained through questionnaires and medical records.Results: Twenty-eight of 52 (53.8%) COVID-19 positive adults and children were positive for SARS-CoV-2 in rectal swabs. Seven of the rectal positive participants were followed for more than 6 days. Two of these (28.6%) continued to test positive in their rectal swabs for up to 29 days after the pharyngeal swabs had turned negative. Hospitalized rectal positive and rectal negative adults were comparable regarding demographic, medical, and biochemical information. Furthermore, no difference was observed in the severity of the disease among the two groups.Conclusions: We provided evidence of rectal SARS-CoV-2 shedding in Danish COVID-19 patients. The clinical importance of rectal SARS-CoV-2 shedding appears to be minimal.

2022 ◽  
Jennifer Moisi

Clostridioides difficile is a Gram positive, spore-forming bacillus colonizing the lower gastrointestinal tract. Use of antibiotics, older age, and underlying diseases contribute to changes in the microbial flora of the gut, which may lead to the production of toxins that cause C. difficile infection (CDI), with symptoms ranging from mild to moderate diarrhea to severe diarrhea, pseudomembranous colitis, toxic megacolon and sepsis. CDI is difficult to treat and has a high risk of recurrence. The fecal-oral route is the predominant mode of C. difficile transmission. The highest CDI incidence rates are reported from developed countries, particularly the United States, but limited disease awareness and surveillance capacity may lead to underestimation of disease burden elsewhere. Treatment consists of stopping ongoing antibiotic treatment, specific anti-CDI antibiotics and fecal microbiota transplant (FMT). CDI recurrence can be prevented by an anti-toxin B monoclonal antibody, bezlotoxumab. Various hygiene measures should be applied but they are costly and of variable effect. A candidate vaccine directed at the C. difficile toxin failed in the past, possibly due to a change in the epitope through inactivation or to a suboptimal immunization schedule. Currently, only one vaccine candidate based on genetically and chemically detoxified toxins A and B is in phase III studies.

2022 ◽  
Vol 12 ◽  
Bharti Mangla ◽  
Shamama Javed ◽  
Muhammad H. Sultan ◽  
Waquar Ahsan ◽  
Geeta Aggarwal ◽  

Drug delivery using oral route is the most popular, convenient, safest and least expensive approach. It includes oral transmucosal delivery of bioactive compounds as the mucosal cavity offers an intriguing approach for systemic drug distribution. Owing to the dense vascular architecture and high blood flow, oral mucosal layers are easily permeable and can be an ideal site for drug administration. Recently, the transmucosal route is being investigated for other therapeutic candidates such as vaccines for their efficient delivery. Vaccines have the potential to trigger immune reactions and can act as both prophylactic and therapeutic conduit to a variety of diseases. Administration of vaccines using transmucosal route offers multiple advantages, the most important one being the needle-free (non-invasive) delivery. Development of needle-free devices are the most recent and pioneering breakthrough in the delivery of drugs and vaccines, enabling patients to avoid needles, reducing anxiety, pain and fear as well as improving compliance. Oral, nasal and aerosol vaccination is a novel immunization approach that utilizes a nanocarrier to administer the vaccine. Nanocarriers improve the bioavailability and serve as adjuvants to elicit a stronger immune response, resulting in increased effectiveness of vaccination. Drugs and vaccines with lower penetration abilities can also be delivered transmucosally while maintaining their biological function. The development of micro/nanocarriers for transmucosal delivery of macromolecules, vaccines and other substances is currently drawing much attention and a number of studies were performed recently. This comprehensive review is aimed to summarize the most recent investigations on needle-free and non-invasive approaches for the delivery of vaccines using oral transmucosal route, their strengths and associated challenges. The oral transmucosal vaccine delivery by nanocarriers is the most upcoming advancement in efficient vaccine delivery and this review would help further research and trials in this field.

2022 ◽  
pp. 107815522110722
Merve Korkmaz Yilmaz ◽  
Ilkay Gulturk ◽  
Seher Yildiz Tacar ◽  
Mesut Yilmaz

Introduction: Immune checkpoint inhibitors (ICIs) are being commonly used to treat solid tumours such as renal cell carcinoma. Hypophysitis is an acute or chronic inflammation of the pituitary gland and nivolumab or pembrolizumab induced hypophysitis is markedly lower compared to ipilimumab. Case report: We present a novel case of a patient with mRCC who was diagnosed with nivolumab induced hypophysitis based on clinical suspicion due to his hormonal profile and a range of symptoms that he developed during nivolumab immunotherapy. Management and outcome: He was treated with high dose of hydrocortisone administered intravenously, subsequently changed to the oral route and physiologic dose. Discussion: Nivolumab induced hypophysitis is a rare condition that usually presents with fewer symptoms. High degree of clinical suspicion and a multidisciplinary team required to diagnose and treat such cases.

2022 ◽  
pp. 104063872110621
Harveen K. Atwal ◽  
Erin Zabek ◽  
Julie Bidulka ◽  
Alecia DuCharme ◽  
Michael Pawlik ◽  

Cryptosporidium parvum is a zoonotic, protozoan parasite that causes potentially life-threatening diarrhea in the host and can be transmitted via the fecal-oral route. C. parvum can infect cattle and may be detected in their feces using a variety of tests. We compared the level of agreement, ease of procedure, and cost among PCR, lateral flow immunoassay, fluorescent antibody, and Kinyoun acid-fast stain direct smear tests. Over the course of 9 mo, 74 calf fecal samples were submitted and tested for C. parvum using all 4 tests. A Fleiss kappa value of 0.813 was obtained, indicating an excellent level of agreement among tests. Overall, the best test based on cost and ease of procedure was the Kinyoun acid-fast stain direct smear.

eLife ◽  
2022 ◽  
Vol 11 ◽  
Hala Tamim El Jarkass ◽  
Calvin Mok ◽  
Michael R Schertzberg ◽  
Andrew G Fraser ◽  
Emily R Troemel ◽  

Microsporidia are ubiquitous obligate intracellular pathogens of animals. These parasites often infect hosts through an oral route, but little is known about the function of host intestinal proteins that facilitate microsporidia invasion. To identify such factors necessary for infection by Nematocida parisii, a natural microsporidian pathogen of Caenorhabditis elegans, we performed a forward genetic screen to identify mutant animals that have a Fitness Advantage with Nematocida (Fawn). We isolated four fawn mutants that are resistant to Nematocida infection and contain mutations in T14E8.4, which we renamed aaim-1 (Antibacterial and Aids invasion by Microsporidia). Expression of AAIM-1 in the intestine of aaim-1 animals restores N. parisii infectivity and this rescue of infectivity is dependent upon AAIM-1 secretion. N. parisii spores in aaim-1 animals are improperly oriented in the intestinal lumen, leading to reduced levels of parasite invasion. Conversely, aaim-1 mutants display both increased colonization and susceptibility to the bacterial pathogen Pseudomonas aeruginosa and overexpression of AAIM-1 reduces P. aeruginosa colonization. Competitive fitness assays show that aaim-1 mutants are favoured in the presence of N. parisii but disadvantaged on P. aeruginosa compared to wild type animals. Together, this work demonstrates how microsporidia exploits a secreted protein to promote host invasion. Our results also suggest evolutionary trade-offs may exist to optimizing host defense against multiple classes of pathogens.

2022 ◽  
Vol 12 (6) ◽  
pp. 12-16
Adhave Swati Sheshrao ◽  
Ingole Rajesh Kundlikrao

Introduction: Many herbal drugs are used to treat liver diseases, but the dose of the herbal drug is high, and they have lesser palatability. An ideal medicine is a medicine that is effective, easy palatable and produces quick action in a low dose. It is possible by adding metals like Lauha (Iron) to the herbal drugs. Objective: To compare the hepatoprotective effect of Nisha Lauha (NL) and Nisha Lauha without Lauha Bhasma (NLWL) in experimental rats. Materials and methods: 40 rats were taken divided into five groups, and each group contained eight rats. Among these groups, four groups receive 0.2 ml of injection containing the 0.1 ml CCL4 plus 0.1 ml liquid paraffin given intraperitoneally for 28 days to induce Hepatotoxicity. Both Test groups received NL and NLWL at a dose of 45mg/kg bd. wt. and 450mg/kg bd. wt. respectively for 28 days. The standard group receives silymarin at a 100 mg/kg bd dose. wt. for 28 days by oral route. The hepatoprotective effect was analyzed using biochemical parameters and histopathological study of the liver. Results: Both the Test and standard groups do not show toxic effects against CCL4 induced hepatotoxicity and lower the dose of the herbal drug due to the addition of Lauha. Conclusion: The result suggests that both test group NL and NL without Lauha Bhasma shows the hepatoprotective activity as equivalent to standard drug silymarin. The addition of Lauha Bhasma to herbal drugs decreases the dose without affecting the drug’s efficacy against the hepatoprotective effect.

2022 ◽  
pp. 93-117
Subramanian Natesan ◽  
Victor Hmingthansanga ◽  
Nidhi Singh ◽  
Pallab Datta ◽  
Sivakumar Manickam ◽  

Administration of drugs through the oral route is considered the simplest and most convenient way to offer greater patient compliance than other routes. Most active drugs discovered in the past and those being discovered in recent times are inadequate because of their inherent limitations in physicochemical properties such as low solubility and permeability, resulting in poor bioavailability, especially after oral administration in the form of tablet or capsule. Pharmaceutical nanoemulsion is the most promising, safer, and multimodal technique for delivering poorly soluble drugs and gaining more attention due to its characteristics such as higher solubilisation capacity, smaller size, surface charge, and site-specific drug targeting. This chapter focuses on the biological fate of nanoemulsion after oral administration and a few case studies related to the oral application of nanoemulsion in delivering poorly soluble drugs. In addition, the anatomy and physiology of the GI tract, components of nanoemulsion, and methods of preparation are addressed.

Sign in / Sign up

Export Citation Format

Share Document