Recombinant nucleocapsid-based ELISA for detection of IgG antibody to Rift Valley fever virus in African buffalo

2008 ◽  
Vol 127 (1-2) ◽  
pp. 21-28 ◽  
Author(s):  
Janusz T. Paweska ◽  
Petrus Jansen van Vuren ◽  
Alan Kemp ◽  
Peter Buss ◽  
Roy G. Bengis ◽  
...  
2007 ◽  
Vol 146 (1-2) ◽  
pp. 327-334 ◽  
Author(s):  
A. Sobarzo ◽  
J.T. Paweska ◽  
S. Herrmann ◽  
T. Amir ◽  
R.S. Marks ◽  
...  

Author(s):  
Ferran Jori ◽  
Kathleen A. Alexander ◽  
Mokganedi Mokopasetso ◽  
Suzanne Munstermann ◽  
Keabetswe Moagabo ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1651
Author(s):  
Janusz T. Pawęska ◽  
Petrus Jansen van Vuren ◽  
Veerle Msimang ◽  
Modu Moustapha Lô ◽  
Yaya Thiongane ◽  
...  

Diagnostic performance of an indirect enzyme-linked immunosorbent assay (I-ELISA) based on a recombinant nucleocapsid protein (rNP) of the Rift Valley fever virus (RVFV) was validated for the detection of the IgG antibody in sheep (n = 3367), goat (n = 2632), and cattle (n = 3819) sera. Validation data sets were dichotomized according to the results of a virus neutralization test in sera obtained from RVF-endemic (Burkina Faso, Democratic Republic of Congo, Mozambique, Senegal, Uganda, and Yemen) and RVF-free countries (France, Poland, and the USA). Cut-off values were defined using the two-graph receiver operating characteristic analysis. Estimates of the diagnostic specificity of the RVFV rNP I-ELISA in animals from RVF-endemic countries ranged from 98.6% (cattle) to 99.5% (sheep) while in those originating from RVF-free countries, they ranged from 97.7% (sheep) to 98.1% (goats). Estimates of the diagnostic sensitivity in ruminants from RVF-endemic countries ranged from 90.7% (cattle) to 100% (goats). The results of this large-scale international validation study demonstrate the high diagnostic accuracy of the RVFV rNP I-ELISA. Standard incubation and inactivation procedures evaluated did not have an adverse effect on the detectable levels of the anti-RVFV IgG in ruminant sera and thus, together with recombinant antigen-based I-ELISA, provide a simple, safe, and robust diagnostic platform that can be automated and carried out outside expensive bio-containment facilities. These advantages are particularly important for less-resourced countries where there is a need to accelerate and improve RVF surveillance and research on epidemiology as well as to advance disease control measures.


2007 ◽  
Vol 136 (9) ◽  
pp. 1261-1269 ◽  
Author(s):  
A. EVANS ◽  
F. GAKUYA ◽  
J. T. PAWESKA ◽  
M. ROSTAL ◽  
L. AKOOLO ◽  
...  

SUMMARYRift Valley fever virus (RVFV) is an arbovirus associated with periodic outbreaks, mostly on the African continent, of febrile disease accompanied by abortion in livestock, and a severe, fatal haemorrhagic syndrome in humans. However, the maintenance of the virus during the inter-epidemic period (IEP) when there is low or no disease activity detected in livestock or humans has not been determined. This study report prevalence of RVFV-neutralizing antibodies in sera (n=896) collected from 16 Kenyan wildlife species including at least 35% that were born during the 1999–2006 IEP. Specimens from seven species had detectable neutralizing antibodies against RVFV, including African buffalo, black rhino, lesser kudu, impala, African elephant, kongoni, and waterbuck. High RVFV antibody prevalence (>15%) was observed in black rhinos and ruminants (kudu, impala, buffalo, and waterbuck) with the highest titres (up to 1:1280) observed mostly in buffalo, including animals born during the IEP. All lions, giraffes, plains zebras, and warthogs tested were either negative or less than two animals in each species had low (⩽1:16) titres of RVFV antibodies. Of 249 sera collected from five wildlife species during the 2006–2007 outbreak, 16 out of 19 (84%) of the ruminant (gerenuk, waterbuck, and eland) specimens had RVFV-neutralizing titres ⩾1:80. These data provide evidence that wild ruminants are infected by RVFV but further studies are required to determine whether these animals play a role in the virus maintenance between outbreaks and virus amplification prior to a noticeable outbreak.


1950 ◽  
Vol 5 (5) ◽  
pp. 243-247
Author(s):  
Minoru MATSUMOTO ◽  
Saburo IWASA ◽  
Motosige ENDO

Sign in / Sign up

Export Citation Format

Share Document