scholarly journals Mouse model for the Rift Valley fever virus MP12 strain infection

2016 ◽  
Vol 195 ◽  
pp. 70-77 ◽  
Author(s):  
Yuekun Lang ◽  
Jamie Henningson ◽  
Dane Jasperson ◽  
Yonghai Li ◽  
Jinhwa Lee ◽  
...  
Virology ◽  
2010 ◽  
Vol 407 (2) ◽  
pp. 256-267 ◽  
Author(s):  
Darci R. Smith ◽  
Keith E. Steele ◽  
Joshua Shamblin ◽  
Anna Honko ◽  
Joshua Johnson ◽  
...  

Virology ◽  
2012 ◽  
Vol 431 (1-2) ◽  
pp. 58-70 ◽  
Author(s):  
Christopher Reed ◽  
Keith E. Steele ◽  
Anna Honko ◽  
Joshua Shamblin ◽  
Lisa E. Hensley ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Kendra N. Johnson ◽  
Birte Kalveram ◽  
Jennifer K. Smith ◽  
Lihong Zhang ◽  
Terry Juelich ◽  
...  

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East that can affect humans and ruminant livestock. Currently, there are no approved vaccines or therapeutics for the treatment of severe RVF disease in humans. Tilorone-dihydrochloride (Tilorone) is a broad-spectrum antiviral candidate that has previously shown efficacy against a wide range of DNA and RNA viruses, and which is clinically utilized for the treatment of respiratory infections in Russia and other Eastern European countries. Here, we evaluated the antiviral activity of Tilorone against Rift Valley fever virus (RVFV). In vitro, Tilorone inhibited both vaccine (MP-12) and virulent (ZH501) strains of RVFV at low micromolar concentrations. In the mouse model, treatment with Tilorone significantly improved survival outcomes in BALB/c mice challenged with a lethal dose of RVFV ZH501. Treatment with 30 mg/kg/day resulted in 80% survival when administered immediately after infection. In post-exposure prophylaxis, Tilorone resulted in 30% survival at one day after infection when administered at 45 mg/kg/day. These findings demonstrate that Tilorone has potent antiviral efficacy against RVFV infection in vitro and in vivo and supports further development of Tilorone as a potential antiviral therapeutic for treatment of RVFV infection.


1950 ◽  
Vol 5 (5) ◽  
pp. 243-247
Author(s):  
Minoru MATSUMOTO ◽  
Saburo IWASA ◽  
Motosige ENDO

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0128215 ◽  
Author(s):  
Nazly Shafagati ◽  
Lindsay Lundberg ◽  
Alan Baer ◽  
Alexis Patanarut ◽  
Katherine Fite ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Halima Rhazi ◽  
Najete Safini ◽  
Karima Mikou ◽  
Meryeme Alhyane ◽  
Khalid Omari Tadlaoui ◽  
...  

Abstract Background Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD). Results Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 109 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 108 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 108 as compared to 6.3 × 108 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus). Conclusions This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion.


Sign in / Sign up

Export Citation Format

Share Document