scholarly journals Corrigendum to “Mutational analysis of the EMCV 2A protein identifies a nuclear localization signal and an eIF4E binding site” [Virology 410 (2011) 257–267]

Virology ◽  
2011 ◽  
Vol 421 (1) ◽  
pp. 85
Author(s):  
Rachel Groppo ◽  
Bradley A. Brown ◽  
Ann C. Palmenberg
Oncogene ◽  
1999 ◽  
Vol 18 (4) ◽  
pp. 955-965 ◽  
Author(s):  
Roger JA Grand ◽  
Julian Parkhill ◽  
Tadge Szestak ◽  
Susan M Rookes ◽  
Sally Roberts ◽  
...  

2004 ◽  
Vol 280 (11) ◽  
pp. 10599-10606 ◽  
Author(s):  
Min-Hsuan Chen ◽  
Iris Ben-Efraim ◽  
Gregory Mitrousis ◽  
Nancy Walker-Kopp ◽  
Peter J. Sims ◽  
...  

1998 ◽  
Vol 18 (5) ◽  
pp. 2640-2649 ◽  
Author(s):  
Matthew Latimer ◽  
Mary K. Ernst ◽  
Linda L. Dunn ◽  
Marina Drutskaya ◽  
Nancy R. Rice

ABSTRACT Members of the Rel/NF-κB family of transcription factors are related to each other over a region of about 300 amino acids called the Rel Homology Domain (RHD), which governs DNA binding, dimerization, and binding to inhibitor. At the C-terminal end of the RHD, each protein has a nuclear localization signal (NLS). The crystal structures of the p50 and RelA family members show that the RHD consists of two regions: an N-terminal section which contains some of the DNA contacts and a C-terminal section which contains the remaining DNA contacts and controls dimerization. In unstimulated cells, the homo- or heterodimeric Rel/NF-κB proteins are cytoplasmic by virtue of binding to an inhibitor protein (IκB) which somehow masks the NLS of each member of the dimer. The IκB proteins consist of an ankyrin-repeat-containing domain that is required for binding to dimers and N- and C-terminal domains that are dispensable for binding to most dimers. In this study, we examined the interaction between IκBα and Rel family homodimers by mutational analysis. We show that (i) the dimerization regions of p50, RelA, and c-Rel are sufficient for binding to IκBα, (ii) the NLSs of RelA and c-Rel are not required for binding to IκBα but do stabilize the interaction, (iii) the NLS of p50 is required for binding to IκBα, (iv) only certain residues within the p50 NLS are required for binding, and (v) in a p50-IκBα complex or a c-Rel-IκBα complex, the N terminus of IκBα either directly or indirectly masks one or both of the dimer NLSs.


FEBS Letters ◽  
1997 ◽  
Vol 413 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Yuri P. Rubtsov ◽  
Andrei S. Zolotukhin ◽  
Ivan A. Vorobjev ◽  
Nina V. Chichkova ◽  
Nickolay A. Pavlov ◽  
...  

2002 ◽  
Vol 159 (2) ◽  
pp. 267-278 ◽  
Author(s):  
C. Patrick Lusk ◽  
Taras Makhnevych ◽  
Marcello Marelli ◽  
John D. Aitchison ◽  
Richard W. Wozniak

The mechanisms that govern the assembly of nuclear pore complexes (NPCs) remain largely unknown. Here, we have established a role for karyopherins in this process. We show that the yeast karyopherin Kap121p functions in the targeting and assembly of the nucleoporin Nup53p into NPCs by recognizing a nuclear localization signal (NLS) in Nup53p. This karyopherin-mediated function can also be performed by the Kap95p–Kap60p complex if the Kap121p-binding domain of Nup53p is replaced by a classical NLS, suggesting a more general role for karyopherins in NPC assembly. At the NPC, neighboring nucleoporins bind to two regions in Nup53p. One nucleoporin, Nup170p, associates with a region of Nup53p that overlaps with the Kap121p binding site and we show that they compete for binding to Nup53p. We propose that once targeted to the NPC, dissociation of the Kap121p–Nup53p complex is driven by the interaction of Nup53p with Nup170p. At the NPC, Nup53p exists in two separate complexes, one of which is capable of interacting with Kap121p and another that is bound to Nup170p. We propose that fluctuations between these two states drive the binding and release of Kap121p from Nup53p, thus facilitating Kap121p's movement through the NPC.


2015 ◽  
Vol 116 (12) ◽  
pp. 2903-2914 ◽  
Author(s):  
Elizabeth Chipps ◽  
April Protzman ◽  
M. Zubayed Muhi ◽  
Shoko Ando ◽  
James P. Calvet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document