n terminus
Recently Published Documents


TOTAL DOCUMENTS

3303
(FIVE YEARS 362)

H-INDEX

102
(FIVE YEARS 6)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0259872
Author(s):  
Maria A. Soria ◽  
Silvia A. Cervantes ◽  
Ansgar B. Siemer

The cytoplasmic polyadenylation element-binding protein Orb2 is a key regulator of long-term memory (LTM) in Drosophila. The N-terminus of the Orb2 isoform A is required for LTM and forms cross-β fibrils on its own. However, this N-terminus is not part of the core found in ex vivo fibrils. We previously showed that besides forming cross-β fibrils, the N-terminus of Orb2A binds anionic lipid membranes as an amphipathic helix. Here, we show that the Orb2A N-terminus can similarly interact with calcium activated calmodulin (CaM) and that this interaction prevents fibril formation. Because CaM is a known regulator of LTM, this interaction could potentially explain the regulatory role of Orb2A in LTM.



2022 ◽  
Vol 119 (3) ◽  
pp. e2114928118
Author(s):  
Moaz Ahmad ◽  
Hwei Ling Ong ◽  
Hassan Saadi ◽  
Ga-Yeon Son ◽  
Zahra Shokatian ◽  
...  

Stromal interaction molecules, STIM1 and STIM2, sense decreases in the endoplasmic reticulum (ER) [Ca2+] ([Ca2+]ER) and cluster in ER–plasma membrane (ER–PM) junctions where they recruit and activate Orai1. While STIM1 responds when [Ca2+]ER is relatively low, STIM2 displays constitutive clustering in the junctions and is suggested to regulate basal Ca2+ entry. The cellular cues that determine STIM2 clustering under basal conditions is not known. By using gene editing to fluorescently tag endogenous STIM2, we report that endogenous STIM2 is constitutively localized in mobile and immobile clusters. The latter associate with ER–PM junctions and recruit Orai1 under basal conditions. Agonist stimulation increases immobile STIM2 clusters, which coordinate recruitment of Orai1 and STIM1 to the junctions. Extended synaptotagmin (E-Syt)2/3 are required for forming the ER–PM junctions, but are not sufficient for STIM2 clustering. Importantly, inositol 1,4,5-triphosphate receptor (IP3R) function and local [Ca2+]ER are the main drivers of immobile STIM2 clusters. Enhancing, or decreasing, IP3R function at ambient [IP3] causes corresponding increase, or attenuation, of immobile STIM2 clusters. We show that immobile STIM2 clusters denote decreases in local [Ca2+]ER mediated by IP3R that is sensed by the STIM2 N terminus. Finally, under basal conditions, ambient PIP2-PLC activity of the cell determines IP3R function, immobilization of STIM2, and basal Ca2+ entry while agonist stimulation augments these processes. Together, our findings reveal that immobilization of STIM2 clusters within ER–PM junctions, a first response to ER-Ca2+ store depletion, is facilitated by the juxtaposition of IP3R and marks a checkpoint for initiation of Ca2+ entry.



2022 ◽  
Author(s):  
Sebastian Seidl ◽  
Nis V Nielsen ◽  
Michael Etscheid ◽  
Bengt-Erik Haug ◽  
Maria Stensland ◽  
...  

Increased Factor VII activating protease (FSAP) activity has a protective effect in diverse disease conditions as inferred from studies in FSAP-/- mice and humans deficient in FSAP activity due to a single nucleotide polymorphism. The activation of FSAP zymogen in plasma is mediated by extracellular histones that are released during tissue injury or inflammation or by positively charged surfaces. However, it is not clear if this activation mechanism is specific and amenable to manipulation. Using a phage display approach we have identified a peptide, NNKC9/41, that activates pro-FSAP in plasma. Other commonly found zymogens in the plasma were not activated. Binding studies with FSAP domain deletion mutants indicate that the N-terminus of FSAP is the key interaction site of this peptide. Blocking the contact pathway of coagulation did not influence pro-FSAP activation by the peptide. In a monoclonal antibody screen, we identified MA-FSAP-38C7 that prevented the activation of pro-FSAP by the peptide. This antibody bound to the LESLDP sequence (amino acids 30-35) in the N-terminus of FSAP. The plasma clotting time was shortened by NNKC9/41 and this was reversed by MA-FSAP-38C7 demonstrating the utility of this peptide. Identification of this peptide, and the corresponding interaction site, provides proof of principle that it is possible to activate a single protease zymogen in blood in a specific manner. Peptide NNKC/41 will be useful as a tool to delineate the molecular mechanism of activation of pro-FSAP in more detail, elucidate its biological role.



2022 ◽  
Vol 15 ◽  
Author(s):  
Desmond Pink ◽  
Julien Donnelier ◽  
John D. Lewis ◽  
Janice E. A. Braun

Extracellular vesicles (EVs) are secreted vesicles of diverse size and cargo that are implicated in the cell-to-cell transmission of disease-causing-proteins in several neurodegenerative diseases. Mutant huntingtin, the disease-causing entity in Huntington’s disease, has an expanded polyglutamine track at the N terminus that causes the protein to misfold and form toxic intracellular aggregates. In Huntington’s disease, mutant huntingtin aggregates are transferred between cells by several routes. We have previously identified a cellular pathway that is responsible for the export of mutant huntingtin via extracellular vesicles. Identifying the EV sub-populations that carry misfolded huntingtin cargo is critical to understanding disease progression. In this work we expressed a form of polyglutamine expanded huntingtin (GFP-tagged 72Qhuntingtinexon1) in cells to assess the EVs involved in cellular export. We demonstrate that the molecular chaperone, cysteine string protein (CSPα; DnaJC5), facilitates export of disease-causing-polyglutamine-expanded huntingtin cargo in 180–240 nm vesicles as well as larger 10–30 μm vesicles.



2022 ◽  
Vol 9 ◽  
Author(s):  
Wenhui Ma ◽  
Xin Kang ◽  
Ping Liu ◽  
Kexin She ◽  
Yuanyuan Zhang ◽  
...  

Abstract Caffeine is an important functional substance and is abundant in tea plant, but little is known about how its biosynthesis is regulated by transcription factors. In this study, the NAC-like transcription factor-encoding gene CsNAC7, which is involved in caffeine synthesis, was isolated from a Yinghong 9 cDNA library using a yeast one-hybrid assay; this gene comprises 1371 bp nucleotides and is predicted to encode 456 amino acids. The expression of CsNAC7 at the transcriptional level in tea shoots shared a similar pattern with that of the caffeine synthase gene yhNMT1 in the spring and summer, and its expressed protein was localized in the nucleus. Assays of gene activity showed that CsNAC7 has self-activation activity in yeast, that the active region is at the N-terminus, and that the transient expression of CsNAC7 could significantly promote the expression of yhNMT1 in tobacco leaves. In addition, overexpression or silencing of CsNAC7 significantly increased or decreased the expression of yhNMT1 and the accumulation of caffeine in transgenic tea calli, respectively. Our data suggest that the isolated transcription factor CsNAC7 positively regulates the caffeine synthase gene yhNMT1 and promotes caffeine accumulation in tea plant.



2021 ◽  
Author(s):  
Bradley M Readnour ◽  
Yetunde A Ayinuola ◽  
Brady Russo ◽  
Zhong Liang ◽  
Vincent A Fischetti ◽  
...  

Human plasminogen (hPg)-binding M-protein (PAM), a major virulence factor of Pattern D Streptococcus pyogenes (GAS), is the primary receptor responsible for binding and activating hPg. PAM is covalently bound to the cell wall (CW) through cell membrane (CM)-resident sortase A (SrtA)-catalyzed cleavage of the PAM-proximal C-terminal LPST¯-GEAA motif present immediately upstream of its transmembrane domain (TMD), and subsequent transpeptidation to the CW. These steps expose the N-terminus of PAM to the extracellular milieu (EM) to interact with PAM ligands, e.g., hPg. Previously, we found that inactivation of SrtA showed little reduction in functional binding of PAM to hPg, indicating that PAM retained in the cell membrane (CM) by the TMD nonetheless exposed its N-terminus to the EM. In the current study, we assessed the effects of mutating the Thr4 (P1) residue of the SrtA-cleavage site in PAM (Thr355 in PAM) to delay PAM in the CM in the presence of SrtA. Using rSrtA in vitro, LPSYGEAA and LPSWGEAA peptides were shown to have low activities, while LPSTGEAA had the highest activity. Isolated CM fractions of AP53/DSrtA cells showed that LPSYGEAA and LPSWGEAA peptides were cleaved at substantially faster rates than LPSTGEAA, even in CMs with an AP53/DSrtA/PAM[T355Y] double mutation, but the transpeptidation step did not occur. These results implicate another CM-resident enzyme that cleaves LPSYGEAA and LPSWGEAA motifs, most likely LPXTGase, but cannot catalyze the transpeptidation step. We conclude that the natural P1 (Thr) of the SrtA cleavage site has evolved to dampen PAM from nonfunctional cleavage by LPXTGase.



2021 ◽  
pp. 106689692110651
Author(s):  
Hilda Mirbaha ◽  
Deyssy Carrillo ◽  
Midori Mitui ◽  
Matthew C. Hiemenz ◽  
Vivekanand Singh ◽  
...  

P53 immunohistochemical staining with antibodies targeted to epitopes at or near the N-terminus are commonly used in diagnostic pathology practice as a surrogate for TP53 mutations. The abnormal staining patterns indicating TP53 mutations include nuclear overexpression, null, and the recently described cytoplasmic staining. The latter staining pattern occurs with the less common TP53 mutations affecting its nuclear localization and/or tetramerization domains that are located toward the C-terminus. Here we describe the first two cases of pediatric sarcomas with cytoplasmic staining with P53 antibody against N-terminus epitope and the absence of staining with P53 antibody against C-terminus epitope. We propose that a more precise description of P53 immunohistochemical staining patterns should include the nature of the antibody used.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elahe Karimi ◽  
Emran Heshmati ◽  
Khosrow Khalifeh

Abstract We compared the binding properties and dynamics of three experimentally reviewed isoforms of human dihydrofolate reductase (DHFR). The cytoplasmic variants including isoforms1 and 2 (iso1 and iso2) are produced by alternative splicing; while the mitochondrial form is located in the mitochondria. The iso1 as the canonical sequence contains 187 residues, and iso2 differs from the iso1, where it has 1–52 residues missing at the N-terminus of canonical sequence. Here, the structural models of the iso2 and mitochondrial forms were constructed by the MODELLER program using the crystal structure of the iso1 as the template. Bioinformatics analysis on ligand-bearing structures demonstrates that mitochondrial variant forms more stable complex with ligands compared with iso1 and 2, indicating their different binding properties. The root mean square fluctuation (RMSF) data suggest that C-terminus of iso1 contains two representative highly flexible fragments, while iso2 contains a highly flexible fragment at N-terminus end. Interestingly, both ends of mitochondrial variant have a degree of rigidity. Finally, the observation of differences in structural dynamics and binding properties predicts that the simultaneous existence of enzyme isoforms is a way to increase the speed of the enzyme maneuver in response to various environmental conditions. This prediction needs to be tested experimentally.



Author(s):  
Eiji Ishikawa ◽  
Masakazu Ikeda ◽  
Hidetsugu Sotoya ◽  
Minako Anbe ◽  
Hoshitaka Matsumoto ◽  
...  

Abstract Cell-bound β-glycosidases of basidiomycetous yeasts show promise as biocatalysts in galactooligosaccharide (GOS) production. Using degenerated primers designed from Hamamotoa singularis (Hs) bglA gene, we newly identified three genes that encode cell-bound β-glycosidase from Sirobasidium magnum (Sm), Rhodotorula minuta (Rm), and Sterigmatomyces elviae (Se). These three genes, also named bglA, encoded family 1 glycosyl hydrolases with molecular masses of 67‒77 kDa. The BglA enzymes were approximately 44% identical to the Hs-BglA enzyme and possessed a unique domain at the N-terminus comprising 110 or 210 amino acids. The Sm-, Rm-, and Se-BglA enzymes as well as the Hs-BglA enzyme were successfully produced by recombinant Aspergillus oryzae, and all enzymes were entirely secreted to the supernatants. Furthermore, addition of some nonionic detergents (e.g. 0.4% [v/v] Triton-X) increased the production, especially of the Hs- or Se-BglA enzyme. Out of the BglA enzymes, the Se-BglA enzyme showed remarkable thermostability (∼70°C). Additionally, the Sm- and Se-BglA enzymes had better GOS yields, so there was less residual lactose than in others. Accordingly, the basidiomycetous BglA enzymes produced by recombinant A. oryzae would be applicable to GOS production, and the Se-BglA enzyme appeared to be the most promising enzyme for industrial uses.



2021 ◽  
Vol 12 ◽  
Author(s):  
Ya-Ling Zhang ◽  
Kui Lin-Wang ◽  
Nick W. Albert ◽  
Caitlin Elborough ◽  
Richard V. Espley ◽  
...  

Wufanshu (Vaccinium bracteatum Thunb.), which is a wild member of the genus Vaccinium, accumulates high concentration of anthocyanin in its berries. In this study, the accumulated anthocyanins and their derivatives in Wufanshu berries were identified through UHPLC–MS/MS analysis. Candidate anthocyanin biosynthetic genes were identified from the transcriptome of Wufanshu berries. qRT-PCR analyses showed that the expression of anthocyanin structural genes correlated with anthocyanin accumulation in berries. The R2R3-MYB, VbMYBA, which is a homolog of anthocyanin promoting R2R3-MYBs from other Vaccinium species, was also identified. Transient expression of VbMYBA in Nicotiana tabacum leaves confirmed its role as an anthocyanin regulator, and produced a higher anthocyanin concentration when compared with blueberry VcMYBA expression. Dual-luciferase assays further showed that VbMYBA can activate the DFR and UFGT promoters from other Vaccinium species. VbMYBA has an additional 23 aa at the N terminus compared with blueberry VcMYBA, but this was shown not to affect the ability to regulate anthocyanins. Taken together, our results provide important information on the molecular mechanisms responsible for the high anthocyanin content in Wufanshu berries.



Sign in / Sign up

Export Citation Format

Share Document