Effect of incineration ash leachates on the hydraulic conductivity of bentonite-polymer composite geosynthetic clay liners

2022 ◽  
Vol 139 ◽  
pp. 25-38
Author(s):  
Christian Wireko ◽  
Tarek Abichou ◽  
Kuo Tian ◽  
Binte Zainab ◽  
Zhiming Zhang
RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 44672-44678
Author(s):  
Qin Li ◽  
Daoping Peng ◽  
Zheng Wu ◽  
Tao Huang

Three commercially available bentonite–polymer composite geosynthetic clay liners (BPC GCLs) were selected for hydraulic conductivity testing, respectively permeated by two types of bauxite leachates with high alkalinity (pH > 12) and high ionic strength (620.3 mM).


2017 ◽  
Vol 54 (8) ◽  
pp. 1118-1138 ◽  
Author(s):  
R.K. Rowe ◽  
R.W.I. Brachman ◽  
M.S. Hosney ◽  
W.A. Take ◽  
D.N. Arnepalli

Four geosynthetic clay liners (GCLs) serving as single liners were exhumed from below 0.7 m of silty sand on a 3:1 (horizontal:vertical) north-facing slope at the QUELTS site in Godfrey, Ontario, after 5 and 7 years. The 300 mm GCL overlaps with 0.4 kg/m supplemental bentonite were all physically intact. The exchangeable bound sodium was completely replaced with divalent cations. The GCL with the smallest needle-punched bundle size (average of 0.7 mm) and percentage area covered by bundles (4%) maintained low hydraulic conductivity (k) when tested under 0.07–1.2 m head with 10 mmol/L CaCl2 solution as the permeant. For GCLs with larger bundles (1.1–1.6 mm) and higher percentage area covered by bundles (9%–14%), k was low when the head was low (0.07 m). Once the applied head increased, k increased by 1–4 orders of magnitude depending on the (i) hydraulic gradient, (ii) size and number of the needle-punched bundles, and (iii) structure and mass of the bentonite per unit area. The results suggest that the GCLs can perform effectively as a single hydraulic barrier in covers providing that the head above the GCL is kept low (e.g., by a suitable drainage layer above the GCL).


Sign in / Sign up

Export Citation Format

Share Document