Liquid limit based assessment of geosynthetic clay liners subject to hydration and hydraulic conductivity testings

2018 ◽  
Vol 46 (4) ◽  
pp. 436-447 ◽  
Author(s):  
Tuğçe Özdamar Kul ◽  
A. Hakan Ören
2022 ◽  
Vol 139 ◽  
pp. 25-38
Author(s):  
Christian Wireko ◽  
Tarek Abichou ◽  
Kuo Tian ◽  
Binte Zainab ◽  
Zhiming Zhang

2017 ◽  
Vol 54 (8) ◽  
pp. 1118-1138 ◽  
Author(s):  
R.K. Rowe ◽  
R.W.I. Brachman ◽  
M.S. Hosney ◽  
W.A. Take ◽  
D.N. Arnepalli

Four geosynthetic clay liners (GCLs) serving as single liners were exhumed from below 0.7 m of silty sand on a 3:1 (horizontal:vertical) north-facing slope at the QUELTS site in Godfrey, Ontario, after 5 and 7 years. The 300 mm GCL overlaps with 0.4 kg/m supplemental bentonite were all physically intact. The exchangeable bound sodium was completely replaced with divalent cations. The GCL with the smallest needle-punched bundle size (average of 0.7 mm) and percentage area covered by bundles (4%) maintained low hydraulic conductivity (k) when tested under 0.07–1.2 m head with 10 mmol/L CaCl2 solution as the permeant. For GCLs with larger bundles (1.1–1.6 mm) and higher percentage area covered by bundles (9%–14%), k was low when the head was low (0.07 m). Once the applied head increased, k increased by 1–4 orders of magnitude depending on the (i) hydraulic gradient, (ii) size and number of the needle-punched bundles, and (iii) structure and mass of the bentonite per unit area. The results suggest that the GCLs can perform effectively as a single hydraulic barrier in covers providing that the head above the GCL is kept low (e.g., by a suitable drainage layer above the GCL).


2014 ◽  
Vol 51 (6) ◽  
pp. 591-598 ◽  
Author(s):  
Gregory P. Makusa ◽  
Sabrina L. Bradshaw ◽  
Erin Berns ◽  
Craig H. Benson ◽  
Sven Knutsson

A study was conducted to assess the effect of cation exchange concurrent with freeze–thaw cycling on the hydraulic conductivity of a geosynthetic clay liner (GCL). GCLs were prehydrated by contact with silica flour moistened with synthetic subgrade pore water and subsequently permeated with a solution representing the pore water in the cover soil over a tailings facility. Control tests were conducted using the same procedure, except deionized (DI) water was used as the permeant liquid to preclude cation exchange from the permeant liquid. The GCLs were subjected to 1, 3, 5, 15, and 20 freeze–thaw cycles, and the hydraulic conductivity and exchange complex were determined before and after freeze–thaw cycling to assess chemical changes that occurred during freezing, thawing, and permeation. GCLs undergoing freeze–thaw cycling experienced little to no cation exchange through 5 freeze–thaw cycles. After 20 freeze–thaw cycles, 50% of the sodium (Na+) initially in the exchange complex was replaced by calcium (Ca2+). Dissolution of calcite within the bentonite is a likely source of the Ca2+. Hydraulic conductivity of the GCLs exposed to freeze–thaw cycling was lower than the hydraulic conductivity of a new GCL permeated with DI water (<2.2 × 10−11 m/s). A small increase in hydraulic conductivity (∼2.3 times), which may have been caused by cation exchange, occurred between 15 and 20 freeze–thaw cycles, but the hydraulic conductivity remained below the hydraulic conductivity of a new GCL unexposed to freeze–thaw cycling and permeated with DI water.


2015 ◽  
Vol 41 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Guang-Wei Zhang ◽  
Hu-Yuan Zhang ◽  
Jin-Fang Wang ◽  
Lang Zhou ◽  
Ping Liu ◽  
...  

Abstract The objective of this paper is to evaluate the self- healing properties of a commercially-available geosynthetic clay liner (GCL) using flexible-wall permeameter. The GCLs are produced by the same factory, but the contents of bentonite are different. Also the hydraulic conductivities (HC) of GCLs with no defect are different. In this study, specimens were completely saturated under the backpressure of 20 kPa before the test. Permeability tests were performed on GCL specimens with penetrating flaw and also on specimens permeated with distilled water and CaCl2 solutions. The test results were presented and discussed. Experimental results showed that the GCL with penetrating flaw did not exhibit complete self-healing in the case of flaw. After 120 days, the hydraulic conductivity increased by approximately an order of magnitude. In addition, CaCl2 solutions had a significant influence on the hydraulic conductivity. The research findings might be of interest to researchers and engineers who design liners for landfills and other liquid containment facilities


2010 ◽  
Vol 28 (2) ◽  
pp. 149-162 ◽  
Author(s):  
Charles D. Shackelford ◽  
Gerald W. Sevick ◽  
Gerald R. Eykholt

Sign in / Sign up

Export Citation Format

Share Document