Understanding the friction and wear mechanisms of bulk metallic glass under contact sliding

Wear ◽  
2013 ◽  
Vol 304 (1-2) ◽  
pp. 43-48 ◽  
Author(s):  
M.L. Rahaman ◽  
L.C. Zhang ◽  
H.H. Ruan
Wear ◽  
2021 ◽  
pp. 203733
Author(s):  
A.F. Tavares ◽  
A.P.O. Lopes ◽  
E.A. Mesquita ◽  
D.T. Almeida ◽  
J.H.C. Souza ◽  
...  

2017 ◽  
Vol 69 (6) ◽  
pp. 919-924
Author(s):  
Dawit Zenebe Segu ◽  
Pyung Hwang

Purpose This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated and oil-lubricated conditions. The comparison was performed using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of a conventional material, SUJ2. Fe-based BMG materials have recently been attracting a great deal of attention for prospective engineering applications. Design/methodology/approach As a part of the development of Fe-based BMGs that can be cost-effectively produced in large quantities, an Fe-based BMG Fe68.8C7.0Si3.5B5.0P9.6 Cr2.1Mo2.0Al2.0 with high glass forming ability was fabricated. In the present study, the friction and wear properties of Fe-based BMG has been comparatively evaluated under dry sliding, deionized water- and oil-lubricated conditions using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of conventional material SUJ2. Findings The results show that the Fe-based BMG had better friction performance than the conventional material. Both the friction coefficient and wear mass loss increased with increasing load. The sliding wear mechanism of the BMG changed with the sliding conditions. Under dry sliding conditions, the wear scar of the Fe-based BMG was characterized by abrasive wear, plastic deformation, micro-cracks and peeling-off wear. Under water- and oil-lubricated conditions, the wear scar was mainly characterized by abrasive wear and micro-cutting. Originality/value In this investigation, the authors developed a new BMG alloy Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 to improve the friction and wear performance under dry sliding, deionized water- and oil- lubricated conditions.


2010 ◽  
Vol 58 (12) ◽  
pp. 4100-4109 ◽  
Author(s):  
T.W. Scharf ◽  
P.G. Kotula ◽  
S.V. Prasad

2011 ◽  
Author(s):  
D. Meresse ◽  
M. Watremez ◽  
M. Siroux ◽  
L. Dubar ◽  
S. Harmand

Sign in / Sign up

Export Citation Format

Share Document