in situ tem
Recently Published Documents


TOTAL DOCUMENTS

1450
(FIVE YEARS 351)

H-INDEX

61
(FIVE YEARS 7)

2022 ◽  
Vol 26 ◽  
pp. 101282
Author(s):  
León Romano Brandt ◽  
Kazunori Nishio ◽  
Enrico Salvati ◽  
Kevin P. Simon ◽  
Chrysanthi Papadaki ◽  
...  

2022 ◽  
Vol 208 ◽  
pp. 114331
Author(s):  
P.A. Loginov ◽  
A.A. Zaitsev ◽  
D.A. Sidorenko ◽  
E.A. Levashov

2022 ◽  
pp. 257-260
Author(s):  
M. Yeadon ◽  
J.C. Yang ◽  
R.S. Averback ◽  
J.W. Bullard ◽  
J.M. Gibson

Friction ◽  
2022 ◽  
Author(s):  
Xue Fan ◽  
Zelong Hu ◽  
Wenchao Huang

AbstractCarbon films with two different kinds of sp2 nanocrystallited structure were investigated to study the stick-slip friction with the in-situ and ex-situ tests. In-situ transmission electron microscope (TEM) observation and nanofriction tests revealed that the origins of stick and slip varied with shear stress and film deformation. At the stick stage, shear stress gradually increased with the contact strengthened until reached the shear strength to break the interfacial adhesion; at the slip stage, the shear stress decreased and accompanied with film deformation. During the sliding process, adhesive deformation resulted in the large stick-slip step while ploughing deformation led to a smoother step. Ex-situ nanofriction tests on a series of sp2 nanocrystallited carbon films with different irradiation energies showed the expected sliding behavior with the in-situ results. This study first clarified the mechanism of stick-slip friction with the in-situ TEM observation, which plays the important role for the micro and nano application of sp2 nanocrystallited carbon films.


2022 ◽  
Vol 120 (1) ◽  
pp. 013101
Author(s):  
Ingrid M. Padilla Espinosa ◽  
Soodabeh Azadehranjbar ◽  
Ruikang Ding ◽  
Andrew J. Baker ◽  
Tevis D. B. Jacobs ◽  
...  

2021 ◽  
Author(s):  
Yu-An Shen ◽  
LI CHANG ◽  
Shou-Yi Chang ◽  
Yi-Chia Chou ◽  
King-Ning Tu ◽  
...  

Abstract Cu with nanotwin (NT) possesses great electrical, mechanical, and thermal properties and has potential for electronic applications. Various studies have reported the effect of NT orientation on Cu mechanical properties. However, its effect on Cu stress-relaxation behavior has not been clarified, particularly in nano-scale. In this study, Cu nanopillars with various orientations were examined by a picoindenter under constant strain and observed by in-situ TEM. The angles between the twin plane and the loading direction in the examined nanopillars were 0°, 60°, to 90°, and a benchmark pillar of single-crystal Cu without NT was examined. The stress drops were respectively 10%, 80%, 4%, and 50%. Owing to the interaction by NT, the dislocation behavior in nanopillars was different from that in bulk or in thin film samples. Especially, the rapid slip path of dislocations to go to the free surface of the nanopillar induced a dislocation-free zone in the 0° nanopillar, which led to work-softening. On the contrary, a high dislocation density was observed in the 90° nanopillar, which was generated by dislocation interaction and obstruction of dislocation slip by twin planes, and it led to work-hardening. The findings reveal the NT orientation in Cu nanopillars affected stress relaxation significantly.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7569
Author(s):  
Chunggeun Park ◽  
Jimin Ham ◽  
Yun Jung Heo ◽  
Won Chul Lee

Epitaxial synthesis of inorganic nanomaterials on pristine 2D materials is of interest in the development of nanostructured devices and nanocomposite materials, but is quite difficult because pristine surfaces of 2D materials are chemically inert. Previous studies found a few exceptions including AuCN, AgCN, CuCN, and Cu0.5Au0.5CN, which can be preferentially synthesized and epitaxially aligned onto various 2D materials. Here, we discover that Au1/2Ag1/2CN forms diamond-shaped nanocrystals epitaxially grown on pristine graphene surfaces. The nanocrystals synthesized by a simple drop-casting method are crystallographically aligned to lattice structures of the underlying graphene. Our experimental investigations on 3D structures and the synthesis conditions of the nanocrystals imply that the rhombic 2D geometries originate from different growth rates depending on orientations along and perpendicular to 1D molecular chains of Au1/2Ag1/2CN. We also perform in situ TEM observations showing that Au1/2Ag1/2CN nanocrystals are decomposed to Au and Ag alloy nanocrystals under electron beam irradiation. Our experimental results provide an additional example of 1D cyanide chain families that form ordered nanocrystals epitaxially aligned on 2D materials, and reveal basic physical characteristics of this rarely investigated nanomaterial.


2021 ◽  
pp. 139773
Author(s):  
Baiyu Guo ◽  
Jingzhao Chen ◽  
Zaifa Wang ◽  
Yong Su ◽  
Hui Li ◽  
...  

2021 ◽  
Vol 205 ◽  
pp. 114214
Author(s):  
Shuang Li ◽  
Matthew Olszta ◽  
Lei Li ◽  
Bharat Gwalani ◽  
Ayoub Soulami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document