scholarly journals Numerical study of seabed response and liquefaction around a jacket support offshore wind turbine foundation under combined wave and current loading

Author(s):  
Shu-xin Wei ◽  
Zuo-dong Liang ◽  
Lin Cui ◽  
Hua-ling Zhai ◽  
Dong-sheng Jeng
2016 ◽  
Vol 13 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Keyvan Esmaeelpour ◽  
Rouzbeh Shafaghat ◽  
Rezvan Alamian ◽  
Rasoul Bayani

The everyday growing populations all over the world and the necessity of increase in consumption of fossil energies have made the human to discover new energy resources, which are clean, cheap and renewable. Wind energy is one of the renewable energy resources. Considerable wind speed has made settling of wind turbines at sea beneficial and appealing. For this purpose, choosing the appropriate plates to set up wind turbines on the surface of sea is necessary. Regarding the installation condition, by choosing suitable geometry for floating breakwaters, offshore wind turbine can be mounted on them. Suitable geometry of breakwater for multifunctional usage could be selected with analyzing and comparing pressure, force and moment produced by incoming waves. In this article, we implement boundary element method to solve governing differential equations by assuming potential flow. On the other hand, for promoting free surface in each time step, we employed Euler-Lagrangian method. Finally, to find the appropriate geometry for installing the wind turbine on the breakwater, moment and wave profile next to the right and left side of breakwater body are calculated. Among simulated geometries, breakwater with trapezoid geometry which its larger base is placed in the water has more sustainability and it is the most suitable geometry for wind turbine installation.


Wind Energy ◽  
2020 ◽  
Vol 23 (8) ◽  
pp. 1673-1692
Author(s):  
Wilson Guachamin‐Acero ◽  
Zhiyu Jiang ◽  
Lin Li

2021 ◽  
Vol 172 ◽  
pp. 453-464
Author(s):  
Le Quang Sang ◽  
Qing’an Li ◽  
Chang Cai ◽  
Takao Maeda ◽  
Yasunari Kamada ◽  
...  

2016 ◽  
Vol 32 (11) ◽  
pp. 5-19
Author(s):  
Ji-Hoon Seo ◽  
Yun Wook Choo ◽  
Jeong-Min Goo ◽  
Youngho Kim ◽  
Jae Hyun Park

2021 ◽  
Author(s):  
Brendan Guillouzouic ◽  
François Pétrié ◽  
Vincent Lafon ◽  
Fabien Fremont

Abstract Mooring is one of the key components of a floating offshore wind turbine since the mooring rupture may lead to the total loss of one or even several turbines in a farm. Even if a large experience in moorings of floating bodies was gained in the oil & gas industry, the renewable energies face new challenges such as reducing the cost as much as possible, reducing the footprint to limit environmental impact or avoid any interference between mooring lines and electrical cables in a farm composed of several tens of turbines. Those constraints may lead to designs suffering snap loads which shall be avoided as far as practicable or addressed with a particular attention, as this quasi-instantaneous stretching of the mooring lines may lead to very high tensions governing the design. This paper presents the results of physical model tests and numerical simulations performed on a typical floating wind turbine concept of semi-submersible type. Both qualitative and quantitative comparisons are performed. The objective is to provide guidelines for FOWT mooring designers regarding the selection of the drag coefficient to consider. A very significant influence of the line’s drag coefficient, on both the probability of occurrence and the magnitude of snap loads, was found. This subject is hereby fully documented on a given case study and general discussions on scale effects, marine growth effects and other parameters are also made. The numerical simulations were performed using the dynamic analysis software ‘OrcaFlex’. The experiments have been carried out by Océanide, in south of France.


Author(s):  
Lars Ivar Hatledal ◽  
Houxiang Zhang ◽  
Karl Henning Halse ◽  
Hans Petter Hildre

Current methods for installation of offshore wind turbines are all sensitive to the weather conditions and the present cost level of offshore wind power is more than twice the cost of land-based units, increasing with water depth. This paper presents numerical simulations of a novel experimental gripper design to reduce the environmental effects applied to a catamaran type of vessel during wind turbine installation. In SFI MOVE project in NTNU Aalesund, our team proposed a novel wind turbine installation process. A new catamaran vessel will carry pre-assembled wind turbines to the installation location. Two new designed grippers on the deck will make a lifting operation to install the wind turbine onto the turbine foundation. Three prismatic grippers with several rolling contact points at the end are attached in an arc at the catamaran’s aft, designed to grasp the turbine foundation in order to make a connection between the two in the horizontal plane. This paper will only emphasize the contact responses between the turbine foundation and the three grippers during the wind turbine installation process. Numerical simulations are carried out using the virtual prototyping framework Vicosim which is developed by NTNU Aalesund. The simulation results show validation of a key part of the proposed new wind turbine installation idea.


Sign in / Sign up

Export Citation Format

Share Document