scholarly journals A natural language processing pipeline to advance the use of Twitter data for digital epidemiology of adverse pregnancy outcomes

2020 ◽  
Vol 8 ◽  
pp. 100076 ◽  
Author(s):  
Ari Z. Klein ◽  
Haitao Cai ◽  
Davy Weissenbacher ◽  
Lisa D. Levine ◽  
Graciela Gonzalez-Hernandez
2021 ◽  
Author(s):  
Abul Hasan ◽  
Mark Levene ◽  
David Weston ◽  
Renate Fromson ◽  
Nicolas Koslover ◽  
...  

BACKGROUND The COVID-19 pandemic has created a pressing need for integrating information from disparate sources, in order to assist decision makers. Social media is important in this respect, however, to make sense of the textual information it provides and be able to automate the processing of large amounts of data, natural language processing methods are needed. Social media posts are often noisy, yet they may provide valuable insights regarding the severity and prevalence of the disease in the population. In particular, machine learning techniques for triage and diagnosis could allow for a better understanding of what social media may offer in this respect. OBJECTIVE This study aims to develop an end-to-end natural language processing pipeline for triage and diagnosis of COVID-19 from patient-authored social media posts, in order to provide researchers and other interested parties with additional information on the symptoms, severity and prevalence of the disease. METHODS The text processing pipeline first extracts COVID-19 symptoms and related concepts such as severity, duration, negations, and body parts from patients’ posts using conditional random fields. An unsupervised rule-based algorithm is then applied to establish relations between concepts in the next step of the pipeline. The extracted concepts and relations are subsequently used to construct two different vector representations of each post. These vectors are applied separately to build support vector machine learning models to triage patients into three categories and diagnose them for COVID-19. RESULTS We report that Macro- and Micro-averaged F_{1\ }scores in the range of 71-96% and 61-87%, respectively, for the triage and diagnosis of COVID-19, when the models are trained on human labelled data. Our experimental results indicate that similar performance can be achieved when the models are trained using predicted labels from concept extraction and rule-based classifiers, thus yielding end-to-end machine learning. Also, we highlight important features uncovered by our diagnostic machine learning models and compare them with the most frequent symptoms revealed in another COVID-19 dataset. In particular, we found that the most important features are not always the most frequent ones. CONCLUSIONS Our preliminary results show that it is possible to automatically triage and diagnose patients for COVID-19 from natural language narratives using a machine learning pipeline, in order to provide additional information on the severity and prevalence of the disease through the eyes of social media.


IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 218-239 ◽  
Author(s):  
Ravikumar Patel ◽  
Kalpdrum Passi

In the derived approach, an analysis is performed on Twitter data for World Cup soccer 2014 held in Brazil to detect the sentiment of the people throughout the world using machine learning techniques. By filtering and analyzing the data using natural language processing techniques, sentiment polarity was calculated based on the emotion words detected in the user tweets. The dataset is normalized to be used by machine learning algorithms and prepared using natural language processing techniques like word tokenization, stemming and lemmatization, part-of-speech (POS) tagger, name entity recognition (NER), and parser to extract emotions for the textual data from each tweet. This approach is implemented using Python programming language and Natural Language Toolkit (NLTK). A derived algorithm extracts emotional words using WordNet with its POS (part-of-speech) for the word in a sentence that has a meaning in the current context, and is assigned sentiment polarity using the SentiWordNet dictionary or using a lexicon-based method. The resultant polarity assigned is further analyzed using naïve Bayes, support vector machine (SVM), K-nearest neighbor (KNN), and random forest machine learning algorithms and visualized on the Weka platform. Naïve Bayes gives the best accuracy of 88.17% whereas random forest gives the best area under the receiver operating characteristics curve (AUC) of 0.97.


2008 ◽  
Vol 9 (Suppl 2) ◽  
pp. S10 ◽  
Author(s):  
Beatrice Alex ◽  
Claire Grover ◽  
Barry Haddow ◽  
Mijail Kabadjov ◽  
Ewan Klein ◽  
...  

2018 ◽  
Author(s):  
Zhou Yuan ◽  
Sean Finan ◽  
Jeremy Warner ◽  
Guergana Savova ◽  
Harry Hochheiser

AbstractRetrospective cancer research requires identification of patients matching both categorical and temporal inclusion criteria, often based on factors exclusively available in clinical notes. Although natural language processing approaches for inferring higher-level concepts have shown promise for bringing structure to clinical texts, interpreting results is often challenging, involving the need to move between abstracted representations and constituent text elements. We discuss qualitative inquiry into user tasks and goals, data elements and models resulting in an innovative natural language processing pipeline and a visual analytics tool designed to facilitate interpretation of patient summaries and identification of cohorts for retrospective research.


Sign in / Sign up

Export Citation Format

Share Document