scholarly journals Sentiment Analysis on Twitter Data of World Cup Soccer Tournament Using Machine Learning

IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 218-239 ◽  
Author(s):  
Ravikumar Patel ◽  
Kalpdrum Passi

In the derived approach, an analysis is performed on Twitter data for World Cup soccer 2014 held in Brazil to detect the sentiment of the people throughout the world using machine learning techniques. By filtering and analyzing the data using natural language processing techniques, sentiment polarity was calculated based on the emotion words detected in the user tweets. The dataset is normalized to be used by machine learning algorithms and prepared using natural language processing techniques like word tokenization, stemming and lemmatization, part-of-speech (POS) tagger, name entity recognition (NER), and parser to extract emotions for the textual data from each tweet. This approach is implemented using Python programming language and Natural Language Toolkit (NLTK). A derived algorithm extracts emotional words using WordNet with its POS (part-of-speech) for the word in a sentence that has a meaning in the current context, and is assigned sentiment polarity using the SentiWordNet dictionary or using a lexicon-based method. The resultant polarity assigned is further analyzed using naïve Bayes, support vector machine (SVM), K-nearest neighbor (KNN), and random forest machine learning algorithms and visualized on the Weka platform. Naïve Bayes gives the best accuracy of 88.17% whereas random forest gives the best area under the receiver operating characteristics curve (AUC) of 0.97.

Author(s):  
Anurag Langan

Grading student answers is a tedious and time-consuming task. A study had found that almost on average around 25% of a teacher's time is spent in scoring the answer sheets of students. This time could be utilized in much better ways if computer technology could be used to score answers. This system will aim to grade student answers using the various Natural Language processing techniques and Machine Learning algorithms available today.


Author(s):  
Dr. K. Suresh

The current way of checking answer scripts is hectic for the college. They need to manually check the answers and allocate the marks to the students. Our proposed system uses Machine Learning and Natural Language Processing techniques to beat this. Machine learning algorithms use computational methods to find out directly from data without hopping on predetermined rules. NLP algorithms identify specific entities within the text, explore for key elements during a document, run a contextual search for synonyms and detect misspelled words or similar entries, and more. Our algorithm performs similarity checking and also the number of words associated with the question exactly matched between two documents. It also checks whether the grammar is correctly used or not within the student's answer. Our proposed system performs text extraction and evaluation of marks by applying Machine Learning and Natural Language Processing techniques.


Blockchain was particularly used in Cryptocurrency technologies. Prior to 20th century there was no other technologies for determining the health of a person naturally. At the dawn of the 21st Century machine learning played a vital role in determining the health of a person using various algorithms and natural language processing techniques. Now for every machine learning technique to work for it needs data. Data is very important as far as providing information is concerned. Data sharing plays a vital role in improving accuracy of techniques involved. Along the blockchain technology plays a vital role in this aspect. Thus, the merging of these two techniques involve provides highly accurate results in terms of machine learning with privacy and reliability of Blockchain technology. This technique uses natural language processing techniques which focuses basically mainly on healthcare techniques such as cancer detection, prediction of machines used in healthcare etc. Prior to healthcare which is used in blockchain it was used in cryptographic techniques only. Also, this technology can be used to provide medical suggestions to the doctors based on the condition of the patient. The accuracy of this method can be increased more using providing as much data as we can. This combination of Blockchain and machine learning algorithms can be used widely in healthcare, where the data is highly secured and there is no fear of data loss. This paper involves how combining these two technologies can be helpful in healthcare.


Author(s):  
Rashida Ali ◽  
Ibrahim Rampurawala ◽  
Mayuri Wandhe ◽  
Ruchika Shrikhande ◽  
Arpita Bhatkar

Internet provides a medium to connect with individuals of similar or different interests creating a hub. Since a huge hub participates on these platforms, the user can receive a high volume of messages from different individuals creating a chaos and unwanted messages. These messages sometimes contain a true information and sometimes false, which leads to a state of confusion in the minds of the users and leads to first step towards spam messaging. Spam messages means an irrelevant and unsolicited message sent by a known/unknown user which may lead to a sense of insecurity among users. In this paper, the different machine learning algorithms were trained and tested with natural language processing (NLP) to classify whether the messages are spam or ham.


Author(s):  
Marina Sokolova ◽  
Stan Szpakowicz

This chapter presents applications of machine learning techniques to traditional problems in natural language processing, including part-of-speech tagging, entity recognition and word-sense disambiguation. People usually solve such problems without difficulty or at least do a very good job. Linguistics may suggest labour-intensive ways of manually constructing rule-based systems. It is, however, the easy availability of large collections of texts that has made machine learning a method of choice for processing volumes of data well above the human capacity. One of the main purposes of text processing is all manner of information extraction and knowledge extraction from such large text. Machine learning methods discussed in this chapter have stimulated wide-ranging research in natural language processing and helped build applications with serious deployment potential.


JAMIA Open ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Meijian Guan ◽  
Samuel Cho ◽  
Robin Petro ◽  
Wei Zhang ◽  
Boris Pasche ◽  
...  

Abstract Objectives Natural language processing (NLP) and machine learning approaches were used to build classifiers to identify genomic-related treatment changes in the free-text visit progress notes of cancer patients. Methods We obtained 5889 deidentified progress reports (2439 words on average) for 755 cancer patients who have undergone a clinical next generation sequencing (NGS) testing in Wake Forest Baptist Comprehensive Cancer Center for our data analyses. An NLP system was implemented to process the free-text data and extract NGS-related information. Three types of recurrent neural network (RNN) namely, gated recurrent unit, long short-term memory (LSTM), and bidirectional LSTM (LSTM_Bi) were applied to classify documents to the treatment-change and no-treatment-change groups. Further, we compared the performances of RNNs to 5 machine learning algorithms including Naive Bayes, K-nearest Neighbor, Support Vector Machine for classification, Random forest, and Logistic Regression. Results Our results suggested that, overall, RNNs outperformed traditional machine learning algorithms, and LSTM_Bi showed the best performance among the RNNs in terms of accuracy, precision, recall, and F1 score. In addition, pretrained word embedding can improve the accuracy of LSTM by 3.4% and reduce the training time by more than 60%. Discussion and Conclusion NLP and RNN-based text mining solutions have demonstrated advantages in information retrieval and document classification tasks for unstructured clinical progress notes.


Author(s):  
Roy Rada

The techniques of artificial intelligence include knowledgebased, machine learning, and natural language processing techniques. The discipline of investing requires data identification, asset valuation, and risk management. Artificial intelligence techniques apply to many aspects of financial investing, and published work has shown an emphasis on the application of knowledge-based techniques for credit risk assessment and machine learning techniques for stock valuation. However, in the future, knowledge-based, machine learning, and natural language processing techniques will be integrated into systems that simultaneously address data identification, asset valuation, and risk management.


Sign in / Sign up

Export Citation Format

Share Document