What caused the low-water phase of glacial Lake Agassiz?

2013 ◽  
Vol 80 (3) ◽  
pp. 370-382 ◽  
Author(s):  
Thomas V. Lowell ◽  
Patrick J. Applegate ◽  
Timothy G. Fisher ◽  
Kenneth Lepper

First-order modeling suggests that a low-water phase in late-glacial Lake Agassiz can be explained through changes in the balance between evaporation, precipitation, and runoff, rather than drainage. The low-water Moorhead Phase is often attributed to drainage through outlets opened by isostatic depression and retreat of the Laurentide ice margin. However, new data indicate that the proposed outlets were ice-covered during the Moorhead Phase. Instead, the lake water levels dropped to the Moorhead Phase before the start of the Younger Dryas chronozone and remained there until 11.3 ka. Thus, drainage seems to be an implausible explanation for Younger Dryas-aged low water levels in Lake Agassiz. An alternative explanation is that evaporation equaled or exceeded water inputs from the adjacent ice margin and the deglaciated parts of the drainage basin. To evaluate whether this hypothesis is plausible, we constructed a simple model that considers the paleo-basin geometry, hydrology, and meltwater production from the adjacent ice margin. Modest hydrologic changes (within the range of present-day variability), coupled with low meltwater production, produce a closed basin. Shifts in the location of the polar jet, driven by increased Arctic albedo, may explain our inferred hydrologic changes.

Author(s):  
S. L. Norris ◽  
D. Garcia‐Castellanos ◽  
J. D. Jansen ◽  
P. A. Carling ◽  
M. Margold ◽  
...  

1975 ◽  
Vol 5 (4) ◽  
pp. 529-540 ◽  
Author(s):  
J.C. Ritchie ◽  
L.K. Koivo

The sediment and diatom stratigraphy of a small pond on The Pas moraine, near Grand Rapids, Manitoba, reveals a change in sedimentary environment related directly to the last stages of Glacial Lake Agassiz. Beach sands were replaced by clay 7300 14C y. a., then by organic silt and, at 4000 14C y. a. by coarse organic detritus; the corresponding diatom assemblages were (I) a predominantly planktonic spectrum in beach sands, (II) a rich assemblage of nonplanktonic forms, and (III) a distinctly nonplanktonic acidophilous spectrum. These results confirm Elson's (1967) reconstruction of the extent and chronology of the final (Pipun) stage of Glacial Lake Agassiz. The sedimentary environments change from a sandy beach of a large lake at 7300 BP to a small, shallow eutrophic pond with clay and silt deposition from 7000 to 4000 BP. From 4000 BP to the present, organic detritus was deposited in a shallow pond that tended toward dystrophy.


2012 ◽  
Vol 55 ◽  
pp. 125-144 ◽  
Author(s):  
Lorna D. Linch ◽  
Jaap J.M. van der Meer ◽  
John Menzies

Sign in / Sign up

Export Citation Format

Share Document