Robust Adaptive Control for Linear Systems with Unknown Parameters**This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Matt James under the direction of Editor Tamer Başar.

Automatica ◽  
1997 ◽  
Vol 33 (10) ◽  
pp. 1909-1916 ◽  
Author(s):  
JUN YONEYAMA ◽  
JASON L. SPEYER ◽  
CHARLES H. DILLON
Author(s):  
JIANPING CAI ◽  
LUJUAN SHEN ◽  
FUZHEN WU

We consider a class of uncertain non-linear systems preceded by unknown backlash-like hysteresis, which is modelled by a differential equation. We propose a new state feedback robust adaptive control scheme using a backstepping technique and properties of the differential equation. In this control scheme, we construct a new continuous function to design an estimator to estimate the unknown constant parameters and the unknown bound of a ‘disturbance-like’ term. The transient performance of the output tracking error can be guaranteed by the introduction of pre-estimates of the unknown parameters in our controller together with update laws. We do not require bounds on the ‘disturbance-like’ term or unknown system parameters in this scheme. The global stability of the closed-loop system can be proved.


2016 ◽  
Vol 13 (03) ◽  
pp. 1650010 ◽  
Author(s):  
Zhengcai Cao ◽  
Longjie Yin ◽  
Yili Fu ◽  
Jian S. Dai

A significant amount of work has been reported in the area of vision-based stabilization of wheeled robots during the last decade. However, almost all the contributions have not considered the actuator dynamics in the controller design. Considering the unknown parameters of the robot kinematics and dynamics incorporating the actuator dynamics, this paper presents a vision-based robust adaptive controller for the stabilization of a wheeled humanoid robot by using the adaptive backstepping approach. For the controller design, the idea of backstepping is used and the adaptive control technique is applied to treat all parametric uncertainties. Moreover, to attenuate the effect of the external disturbances on control performance, smooth robust compensators are employed. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, simulation results are given to verify the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document