actuator dynamics
Recently Published Documents


TOTAL DOCUMENTS

514
(FIVE YEARS 102)

H-INDEX

36
(FIVE YEARS 7)

2022 ◽  
Author(s):  
John K. Zelina ◽  
Kadriye Merve Dogan ◽  
Richard J. Prazenica ◽  
Troy Henderson

2022 ◽  
Vol 118 ◽  
pp. 102994
Author(s):  
Yingkai Xia ◽  
Kan Xu ◽  
Zhemin Huang ◽  
Wenjin Wang ◽  
Guohua Xu ◽  
...  

Vibration ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1-19
Author(s):  
Çağlar Uyulan

Modelling errors and robust stabilization/tracking problems under parameter and model uncertainties complicate the control of the flexible underactuated systems. Chattering-free sliding-mode-based input-output control law realizes robustness against the structured and unstructured uncertainties in the system dynamics and avoids the excitation of unmodeled dynamics. The main purpose of this paper was to propose a robust adaptive solution for stabilizing and tracking direct-drive (DD) flexible robot arms under parameter and model uncertainties, as well as external disturbances. A lightweight robot arm subject to external and internal dynamic effects was taken into consideration. The challenges were compensating actuator dynamics with the inverter switching effects and torque ripples, stabilizing the zero dynamics under parameter/model uncertainties and disturbances while precisely tracking the predefined reference position. The precise control of this kind of system demands an accurate system model and knowledge of all sources that excite unmodeled dynamics. For this purpose, equations of motion for a flexible robot arm were derived and formulated for the large motion via Lagrange’s method. The goals were determined to achieve high-speed, precise position control, and satisfied accuracy by compensating the unwanted torque ripple and friction that degrades performance through an adaptive robust control approach. The actuator dynamics and their effect on the torque output were investigated due to the transmitted torque to the load side. The high-performance goals, precision and robustness issues, and stability concerns were satisfied by using robust-adaptive input-output linearization-based control law combining chattering-free sliding mode control (SMC) while avoiding the excitation of unmodeled dynamics. The following highlights are covered: A 2-DOF flexible robot arm considering actuator dynamics was modelled; the theoretical implication of the chattering-free sliding mode-adaptive linearizing algorithm, which ensures robust stabilization and precise tracking control, was designed based on the full system model including actuator dynamics with computer simulations. Stability analysis of the zero dynamics originated from the Lyapunov theorem was performed. The conceptual design necessity of nonlinear observers for the estimation of immeasurable variables and parameters required for the control algorithms was emphasized.


Aerospace ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 10
Author(s):  
Aykut Tamer ◽  
Pierangelo Masarati

Rotorcraft stability is an inherently multidisciplinary area, including aerodynamics of rotor and fuselage, structural dynamics of flexible structures, actuator dynamics, control, and stability augmentation systems. The related engineering models can be formulated with increasing complexity due to the asymmetric nature of rotorcraft and the airflow on the rotors in forward flight conditions. As a result, linear time-invariant (LTI) models are drastic simplifications of the real problem, which can significantly affect the evaluation of the stability. This usually reveals itself in form of periodic governing equations and is solved using Floquet’s method. However, in more general cases, the resulting models could be non-periodic, as well, which requires a more versatile approach. Lyapunov Characteristic Exponents (LCEs), as a quantitative method, can represent a solution to this problem. LCEs generalize the stability solutions of the linear models, i.e., eigenvalues of LTI systems and Floquet multipliers of linear time-periodic (LTP) systems, to the case of non-linear, time-dependent systems. Motivated by the need for a generic tool for rotorcraft stability analysis, this work investigates the use of LCEs and their sensitivity in the stability analysis of time-dependent, comprehensive rotorcraft models. The stability of a rotorcraft modeled using mid-fidelity tools is considered to illustrate the equivalence of LCEs and Floquet’s characteristic coefficients for linear time-periodic problems.


Robotica ◽  
2021 ◽  
pp. 1-23
Author(s):  
Yong Jin Byeon ◽  
Byung Kook Kim

Abstract We establish a highly feasible algorithm for time-optimal cornering trajectory planning (TP) for car-like mobile robots (CLMRs) based on a dynamic model that contains actuator dynamics. First, we formulate an accurate dynamic model of a robot that contains DC motor actuators; this includes steering braking (caused by the lateral force of the front steering wheel) and two types of friction (viscous and Coulomb) under a nonslip condition. Our TP algorithm can utilize the full power of the DC motor actuators within proper pulse width modulation bounds and generated torque limits. Then, we establish an algorithm for a time-optimal cornering trajectory planning for CLMRs (TOCTP-CLMR). Our algorithm divides the trajectory into five sections comprising three turnings and two translations to minimize the travel distance. Then, we utilize the quickest rotation when turning to construct the time-optimal trajectory that satisfies the bang-bang principle. In addition, simulations are performed to demonstrate the validity of this method. Finally, we conduct open-loop experiments to validate our dynamic model and a trajectory tracking experiment to demonstrate the feasibility of the TOCTP-CLMR trajectory.


Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 805-821
Author(s):  
Ibrahim F. Gebrel ◽  
Samuel F. Asokanthan

This study investigates the nonlinear dynamic response behavior of a rotating ring that forms an essential element of MEMS (Micro Electro Mechanical Systems) ring-based vibratory gyroscopes that utilize oscillatory nonlinear electrostatic forces. For this purpose, the dynamic behavior due to nonlinear system characteristics and nonlinear external forces was studied in detail. The partial differential equations that represent the ring dynamics are reduced to coupled nonlinear ordinary differential equations by suitable addition of nonlinear mode functions and application of Galerkin’s procedure. Understanding the effects of nonlinear actuator dynamics is essential for characterizing the dynamic behavior of such devices. For this purpose, a suitable theoretical model to generate a nonlinear electrostatic force acting on the MEMS ring structure is formulated. Nonlinear dynamic responses in the driving and sensing directions are examined via time response, phase diagram, and Poincare’s map when the input angular motion and nonlinear electrostatic force are considered simultaneously. The analysis is envisaged to aid ongoing research associated with the fabrication of this type of device and provide design improvements in MEMS ring-based gyroscopes.


Sign in / Sign up

Export Citation Format

Share Document