scholarly journals Mechanism of proton translocation by cytochrome c oxidase: a new four-stroke histidine cycle11Amino acid residues are numbered according to the subunit I structure of cytochrome aa3 from bovine heart mitochondria.

2000 ◽  
Vol 1458 (1) ◽  
pp. 188-198 ◽  
Author(s):  
Mårten Wikström
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Markus L. Björck ◽  
Jóhanna Vilhjálmsdóttir ◽  
Andrew M. Hartley ◽  
Brigitte Meunier ◽  
Linda Näsvik Öjemyr ◽  
...  

AbstractIn cytochrome c oxidase (CytcO) reduction of O2 to water is linked to uptake of eight protons from the negative side of the membrane: four are substrate protons used to form water and four are pumped across the membrane. In bacterial oxidases, the substrate protons are taken up through the K and the D proton pathways, while the pumped protons are transferred through the D pathway. On the basis of studies with CytcO isolated from bovine heart mitochondria, it was suggested that in mitochondrial CytcOs the pumped protons are transferred though a third proton pathway, the H pathway, rather than through the D pathway. Here, we studied these reactions in S. cerevisiae CytcO, which serves as a model of the mammalian counterpart. We analyzed the effect of mutations in the D (Asn99Asp and Ile67Asn) and H pathways (Ser382Ala and Ser458Ala) and investigated the kinetics of electron and proton transfer during the reaction of the reduced CytcO with O2. No effects were observed with the H pathway variants while in the D pathway variants the functional effects were similar to those observed with the R. sphaeroides CytcO. The data indicate that the S. cerevisiae CytcO uses the D pathway for proton uptake and presumably also for proton pumping.


Sign in / Sign up

Export Citation Format

Share Document