scholarly journals Novel fluorescence membrane fusion assays reveal GTP-dependent fusogenic properties of outer mitochondrial membrane-derived proteins

1998 ◽  
Vol 1371 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Jorge D Cortese ◽  
Laura A Voglino ◽  
Charles R Hackenbrock
Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1085 ◽  
Author(s):  
Andrés Tolosa-Díaz ◽  
Víctor G. Almendro-Vedia ◽  
Paolo Natale ◽  
Iván López-Montero

Mitochondria are double-membrane organelles that continuously undergo fission and fusion. Outer mitochondrial membrane fusion is mediated by the membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), carrying a GTP hydrolyzing domain (GTPase) and two coiled-coil repeats. The detailed mechanism on how the GTP hydrolysis allows Mfns to approach adjacent membranes into proximity and promote their fusion is currently under debate. Using model membranes built up as giant unilamellar vesicles (GUVs), we show here that Mfn1 promotes membrane adhesion of apposing lipid vesicles. The adhesion forces were sustained by the GDP-bound state of Mfn1 after GTP hydrolysis. In contrast, the incubation with the GDP:AlF 4 − , which mimics the GTP transition state, did not induce membrane adhesion. Due to the flexible nature of lipid membranes, the adhesion strength depended on the surface concentration of Mfn1 through a cooperative binding mechanism. We discuss a possible scenario for the outer mitochondrial membrane fusion based on the modulated action of Mfn1.


Author(s):  
Krishan K. Arora ◽  
Glenn L. Decker ◽  
Peter L. Pedersen

Hexokinase (ATP: D-hexose 6-phophotransferase EC 2.7.1.1) is the first enzyme of the glycolytic pathway which commits glucose to catabolism by catalyzing the phosphorylation of glucose with ATP. Previous studies have shown diat hexokinase activity is markedly elevated in rapidly growing tumor cells exhibiting high glucose catabolic rates. A large fraction (50-80%) of this enzyme activity is bound to the mitochondrial fraction (1,2) where it has preferred access to ATP (3). In contrast,the hexokinase activity of normal tissues is quite low, with one exception being brain which is a glucose-utilizing tissue (4). Biochemical evidence involving rigorous subfractionation studies have revealed striking differences between the subcellular distribution of hexokinase in normal and tumor cells [See review by Arora et al (4)].In the present report, we have utilized immunogold labeling techniques to evaluate die subcellular localization of hexokinase in highly glycolytic AS-30D hepatoma cells and in the tissue of its origin, i.e., rat liver.


Sign in / Sign up

Export Citation Format

Share Document