A comprehensive model for the prediction of particle-size distribution in catalyzed olefin polymerization fluidized-bed reactors

1998 ◽  
Vol 53 (18) ◽  
pp. 3251-3267 ◽  
Author(s):  
H. Hatzantonis ◽  
A. Goulas ◽  
C. Kiparissides
Author(s):  
F. Al-Raqom ◽  
J. F. Klausner

A fluidized bed reactor has been developed which uses a two-step thermochemical water splitting process with a peak hydrogen production rate of 47 Ncm3/min.gFe at an oxidation temperature of 850°C. Of particular interest, is that a mixture of iron and zirconia powder is fluidized during the oxidation reaction using a steam mass flux of 0.58 g/min-cm2, and the zirconia powder serves to virtually eliminate iron powder sintering while maintaining a high reaction rate. The iron/zirconia powder is mixed with a ratio of 1:2 by apparent volume, equivalent mass ratio, and both iron and zirconia particles are sieved to sizes ranging from 125–355 μm. Fluidized bed reactors are advantageous because they have high reactivity, strong thermal and chemical transport, and tend to be compact. There has been significant interest in developing fluidized bed reactors for solar thermochemical reactors, but sintering of the reactive powder has inhibited their development. The current powder mixture and reactor configuration shows great potential for achieving high hydrogen production rates for operation at high temperature. The experimental investigations for utilizing zirconia as a sintering inhibitor was found to be dependent on the iron and zirconia particle size, particle size distribution and iron/zirconia apparent volume ratio. For example at 650 °C the oxidation of iron powder with a mean particle size of 100 μm and a wide particle size distribution (40–250 μm) mixed with 44 μm zirconia powder with an iron/zirconia apparent volume ratio of 1:1 results in 75–90 % sintering. In all cases when iron is mixed with zirconia, the hydrogen production rate is not affected when compared with the pure iron case. When iron powder is mixed with zirconia, both with a narrow particle size distribution (125–355 μm) the first oxidation step results in 3–7% sintering when the reactions are carried out at temperatures ranging between 840–895 °C. The hydrogen fractional yield is high (94–97%). For subsequent redox reactions, the sintering is totally eliminated at 867 and 895 °C although the hydrogen fractional yield decreases to 27 and 33%, respectively. This study demonstrates that mixing iron with zirconia in an equivalent mass ratio and similar particle size can eliminate sintering in a fluidized bed reactor at elevated temperatures up to 895°C.


Sign in / Sign up

Export Citation Format

Share Document